
Best 
Available 

Copy 

., 



muß w.m«w'T~mi^p^^mßl*^' mimniimi-*^m^*^~^^^m»mv' \*vmw*m*l''"*"m' " ^'""'*■"''    -      ''      ii u iiiut ■■■ »ii.iuji 

AD-786  721 

COPILOT  A  MULTIPLE  PROCESS   APPROACH 
TO  INTERACTIVE  PROGRAMMING  SYSTEMS 

Daniel  Carl  Swinehart 

Stanford  University 

Prepared  for: 

Advanced   Research  Projects   Agency 

July   197 4 

DISTRIBUTED BY: 

mr 
National Technical Information Service 
U. S. DEPARTMENT  OF COMMERCE 
5285 Port Royal Road, Springfield Va. 22151 1 

_—. ■'—:      -   - -■■'——- — ■ 



11 '• ■ 

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY 
MEMO AIM-230 

STAN-CS-74-412 

00 

COPILOT A MULTIPLE PROCESS APPROACH TO 
INTERACTIVE PROGRAMMING SYSTEMS 

BY 

DANIEL CARL SWINEHART 

SUPPORTED   BY D D C 

ADVANCED RESEARCH PROJECTS AGENCY 

ARPA ORDER NO. 457 

JULY 1974 

COMPUTER SCIENCE DEPARTMENT 

School of Humanities and Sciences 

STANFORD UNIVERSITY 

1 
I 

•»■iii. 

NATIONAl   TFCHNICAL 
INFORMATION  SLRVICE 

U S Oeparlmenf of rnmmprre 
SorinRfieKi   VA   22151 

tmmi in ■   ■- 

2-': 

 I 





P.IUI.I, III UW(« r—m ■"■"•■-1 »PWW!^——™. m um Jin M» i« 

*- :A 

..., .„.., _.,..,._. 

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY 
MEMO AIM'ttO 

JULY 1971 

COMPUTER SCIENCE DEPARTMENT REPORT 
STAN-C.S-7t-4l2 

COPILOT: A MULTIPLE PROCESS APPROACH TO 
INTERACTIVE PROGRAMMING SYSTEMS 

by 
Daniel Carl Swnvhsit 

ABSTRACT: An experimmial interactive system, COPILOT, is used as the concrete 
vchirlo for testing and descnbing methods for adding multiple piocessing facilities to an 
intemctive language environment 

COPILOT allows Mie user to create, modify, investigate, and control programs written in 
an Al&ol-like language, augmented for multiple piocessing. Although COPILOT \% 
compiler based, many of our solutions could also he applied to an interpretive system. 

Central to the design is the use of CRT displays to present programs, program data, an 1 
system status. This continuous display of information in context allows the user to retain 
comprehension of complex program environments, and to indicate the environments to U 
affected by his commands. 
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COPILOT uses the multiple processing facilities tn its advantage to achieve a  "rmi, 
preemptive' kind of interactive control.  The user's terminal is contmuouslv available loi 
(umm.inds   of   any   kind;   program   editing,   vanible   mquny,   program   contiol,   etc.. 
indrprniiiiit nf the exerutKNi state of the processes he is controlling    No process may 
nml mi ally gain possession of the user''; input; the usei retains control at all times 

The Miiphasis throiiK.hout is on improving the chaiactenstics of the interface between Ihc 
usei ami the system. 
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ABSTRACT 

The addition of multiple processing facilities to a language used in an interactive computing 

environment requires new techniques This dissertation presents one approach, emphasizing 

the characteristics of the interfr.ce betv.^-. the user and the system. 

We have designed  an experimental interactive programming system, COPILOT, as the 

concrete vehicle for testing and describing our methods. COPILOT allows the user to create, 

modify, investigate, and control programs written in an Mgol-like language, which has beei 

augmented with facilities for multiple processing.   Although COPILOT is compiler-based, 

many of our solutions could also be applied to an interpretive system. 

Central to the design is the use of CRT displays to present programs, program data, and 

system status. This continuous display of information in context allows the user to retain 

comprehension of complex program environments, and to indicate the environments to be 

affected by his commands 

COPILOT uses the multiple processing facilities to its advantage to achieve a kind of 

interactive control winch we have termed "non-preemptive". The user's terminal is 

continuously available for commands of any kind; program editing, variable inquiry, 

program control, etc, independent of the execution state of the processes he is controlling. 

No process may unilaterally gam possession of the user's input; the user retains control at all 

times 

Commands in COPILOT arc expressed as statements in the programming language. This 

single language policy adds consistency to the system, and permits the user to construct 

procedures for the execution of repetitive or complex command sequences. An abbreviation 

facility is provided for the most common terminal operations, for convenience and speed. 

We have attempted in this thesis to extend the facilities of interactive programming systems 

in response to developments in language design and information display technology. The 

resultant system provides an interface which, we think, is better matched to the interactive 

needs of its user than are its predecessors. 

I XIV 
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CHAPTER 1 

INTRODUCTION 

Interactive, or conversational, computing owes its existence to the development of 

multiprograniming. or multiple processing, facilities. The scarcity and expense of 

computing equipment pre' ented direct, convenient user interaction with the programs he 

wrote until a way was found for several people to share the resources of a computer system 

simultaneously 

A process, as we will use it. is 'an activity comprised of a time-ordered sequence of actions" 

[56] The behavior of a process does not depend on the activity of other processes- except, 

perhaps, for the time and other resources it requires to execute- unless such interaction is 

intended We may thert/ore treat a process as if it had sole use of its own processor 

(computer or other active agent). Processes may communicate with each other, through 

messages or shared data, or they may operate independently. 

This multiple process activity can be simulated by a single processor, under control of the 

appropriate operating system. In such a multiprogramming system, use of the processor 

(and other resources) is allocated among the competing processes, providing for each a virtual 

processor somewhat slower than the real one. A time sharing system is a multiprogramming 

system to which terminal devices (e.g., teletypes or display terminals) have been connected, 

allowing users to communicate directly with active processes within the system. 

Joss [7], Basic [29). LCC [45]. APL [26]. and BBN-Lisp [53] are examples of 

language systems which are designed to operate in a time shai ?d environment: they are all 

Interactive Programming Systems (IPSs) (*) They all allow a user to create a program "on 

line"; to execute it, examine its state, and modify its definition (to "debug" it); and to supply it 

with requested data In the current versions of these systems, the system algorithms and data, 

along with those created by the user, form a single process within the operating system. 

(*) We will examine these and other notable Interactive Programming Systems in Chapter 3. 
I 

1 

  



iiwvt    *m>immiiwim*ii^w™m^fmmmmmmmmmmimmim.        ■     ''•'«''iiiniiiwimimrmmmmmiumvwijuvi^m^mmimmmmmmi^mmr-'mmmmimimwiif 

1 A   THE PROBLEM 

IB   COPILOT 

.: 

A time sharing system can use process structures to provide a totally independent operating 

enviionment for each of its users. However, when processes are allowed to communicate and 

to cooperate with each other, they can become a useful facility for the performance of a 

single project The Simula 67 document [14] contains several simple examples of 

cctfperating processes More recently, other operating systems and language systems have 

begun providing their users direct access to multiple processing facilities. 

Inherent in an Interactive Programming System design is a specif.cation of the role the user 

plays in its operation: the appearance of the interlace between the user and the system The 

more sophisticated f!f the IPSs mentioned above (those which implement the more powerful 

*nd complex langua es) define a user role which cannot easily be extended to handle the 

multiple simultaneous control and data environments of a language system which supports 

multiple processes   We will present arguments to support this contention 

In this dissertation we will address the problem of building Interactive Programming Systems 

which can contend with multiple proceüing: environments. Instead of treating this endeavor 

as a burden, we will look for ways to use fhe$e facilities to improve the performance of the 

system, and of the user 
.: 

;; The bulk of this thesis is a description of an experimental IPS, COPILOT, which we have 

designed as theVoncrete vehicle for testing and describing our methods. COPILOT allows 

the user to createVnodify, investigate, and control programs written in an Algol-like language, 

which has been augment d with facilities for multiple processing Although COPILOT is 

compiler-based, many of our solutions could also be applied to an interpretive system. 

.: 

D 
Central to the design is the use of CRT displays to present programs, program data, and 

system status This continuous display of information with some associated context helps the 

user to retain comprehension of complex program environments, and to indicate the 

environments to be affected by his commands 

J 
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COPILOT uses the multiple processing facilities to its advantage, to achieve a k*nd of 

interactive control which we call "non-pre#mptive". The user's terminal is continuously 

available for corT,.^ands of any kind: program editing, variable inquiry, program control, etc., 

independent of the execution state of the processes he is controlling. Nc process may 

unilaterally gain possession of the user's input: the user retains control at all times. 

Commands in COPILOT are expiessed as MISLE language statements. This single 

language policy adds consistency to the system, and permits the user to construct procedures 

for the execution of repetitive ot complex command sequences. A top-level abbreviation 

facility is provided for the most common terminal operations. 

The role of the COPILOT user is that of a global observer and controller, with equal access 

to all his program and data environments, subject only to protection restrictions imposed by 

the operating system. We will demonstrate that this view is substantially different from the 

more local focus provided by the typical single process IPS. 

l.C.   A BRIEF OUTLINE 

The early chapters of his dissertation establr a basis for the study, defining our goals 

based on observed needs. A survey of existing IPSs follows, provided as a basis for 

comparison, and to indicate the debt we owe to our predecessors. 

Chapter 4 is an overview of the COPILO" desgn. After describing the basic facilities of 

the system, emphasizing the achievement r. the stated goals, we present a detailed example of 

system operation The reader interested in system design may choose to read this chapter 

first; the references to earlier chapters should not interfere with this procedure. 

Subsequent chapters provide detailed user-level descriptions of COPILOT, giving special 

attention to the facilities for multiple processing, and to our reliance on the use of display 

devices to enhance these facilities. 

We have limited implementation considerations to a brief chapter which concentrates on the 

structures we have created for representing programs at Jifferenr lev-Is, or "Tiers", and the 

means for maintaining the necessary relationships betweei Tiers. 

— ■'-^- ._- 
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The  final  chapter   is  a  compendium of miscellaneous  topics,  unsolved   problems,   and 

suggestions for further research. 
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CH\PTER 2 

HUMAN INTERACTIVE CHARACTERISTICS 

2.A   THE BEHAVIOR MATCH 

An Interactive computer System (IS) is the hardware and software which allows composition, 

testing, debugging, and operation of computer programs, enhancing the "ability of the user to 

initiate, interrupt, and generally interject himself into the control of the system" [44]. Ir 

practice, an IS consists of a user conrole (keyboard and printer), and the set of program and 

interactive features which are available to it. operating on a ciigital computer, which is 

usually time-shared. An Interactive Programming System (IPS) is an IS incoiporating a 

single programming language for all programming and program control. 

Most recent emphases in IPS design (f) have been on improved language design, improved 

debugging facilities, and on the development of "single language" systems, which extend the 

programming language to include the interactive facilities. Mitchell's thesis [44], itself a 

significant contribution to Interactive Progr imming Systems, contains as well a good survey 

of the leading examples of cuirent systems. His emphasis Is is on language design and on 

implementation considerations (flexibility, efficiency, and portability). 

The emphasis of this disseitation is on the user-system interface. It is our desire to provide a 

convenient, pleasant, intuitive interface between the user and the IPS. We intend to do this 

by providing a system whose behavior matches as closely as possible the relevant 

characteristics of the people who use it. Our thesis is that such a system can measurably 

increase user performance. 

There is an intriguing, if not terribly accurate, metaphor to be found in electronic lore: the 

"impedance match". For maximum efficiency (minimum wasted energy), the impedance of an 

output from one device must cusely match the input impedance of any device to which it is 

connected. If the impedance mismatch is too great, the connection will fail to perform 

successfully at all. We will call our IPS analogue a "Behavior Match" - a term which we 

shall attempt to justify. 

(t) Examples are ECL, LCC, and BBN Lisp, all of which we will discuss in the survey of Chapter 
3. 
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To emphasize our conviction of the importance of this Behavior Match concept, and the 

necessity for some terminology to express it, we offer these informal definitions and terms: 

The Behavior of an entity is that set of processes which determine the manner in which 

information can be presented to it, apd is presented by it. 

A Behavior Match has been achieved when the "behavior" of a system complements the 

behavior of its user, optimizing his performance. 

These definitions are clearly subjective, containing as well enough undefined terms and vague 

semantics to preclude their use for any measurement purposes. Although we hope to clarify 

these definitions somewhat in the sequel, their major purpose is to provide an intuitive basis 

for cliscussmn. 

The Behavior Match diverges from the impedance match example in that user and system 

behavior need not be identical, or even similar; they need only be "complementary." However, 

we shall show that the similarity is stronger than one might expect. 

At the risk of overloading the "impedance match' analogy, let us point out one additional 

similarity, the impedance match between communicating devices need only exist at the 

interface between them. It is possible to design circuits which isoiate the main body of a 

device from its interface, allowing it to employ impedances (and other related characteristics) 

which are internally convenient. Similarly, many of the internal details of an efficient, 

powerful IPS must be hidden from the user, since their functions (e.g. compilation, data 

conversion) are not involved in the problem-solving efforts of the user, nor are their results 

(binary machine instructions, etc.) likely to be meaningful to him. 

2.B.  SCOPE OF APPLICATION 

The bulk of this dissertation is dedicated to the design of system interface characteristics 

which will improve the interactive behavior match between system and user. Just as the 

interface characteristics ore chooses for an electronic device place certain constraints on the 

internal device design, our IPS interface decisions will have an effect on all aspects of system 

design and implementation.   However, we should not let our human engineering decisions 

.! 

.i 

0 
J 

;; 

"i 
J 

Mi HUM       -- -^ -- 



n tmmnmit^mmmiFm m-mw^vm^m^mmmmm*!™* ^PW* "WPW • »>«mim,\ 

I 

unduly reduce our range of options in such fundamental areas as: the selection of a 

programming language; the choice of execution methods (compiled or interpreted); whether 

the system is intended for the creation of large, "production" programs, or for smaller, 

"instructional" ones; or whether it is intended chiefly for novice or expert users. We hope to 

show that the approaches to IPS design which we advocate apply to systems which vary 

widely in these parameters. 

We will present in the course of the dissertation an IPS. COPILOT, as a concrete vehicle for 

discussing methods for attaining I good Behavior Match. Because it is a concrete system. 

COPILOT exhibits certain choices from the above parameter spectra. Indeed, we think we 

have made the mire difficult, psrhaps less inherently flexible choice in nearly every case. 

This is true in part because of the particular needs of the environment for which we have 

designed the system, in part because of a desire to demonstrate the versatility limits of our 

methods. Nevertheless, particularly in these initial chapters, we will attempt to indicate those 

areas where choices can be made, and those which are heavily constrained by our solutions. 

2.C.  SPECIFIC ATTRIBUTES 

We have chosen for study a set of hi man interactive attributes which, we believe, an IPS 

should accommodate in order to achie/e a behavior match. This set of characteristics, which 

follows, was derived in two ways: some are characteristics which we have observed, and 

which influenci'd our design - a priori observations. The rest are. admittedly, a posteriori 

observations, attributes we have noticed which are fortunate in light of what our methods 

provide   This fact should not affect their validity 

We do not claim to have isolated all relevant interactive attributes. We have concentrated on 

these behavioral aspects which relate to "process" and "information transfer". Additionally, 

these conjectures will have to stand as the opinions of the author- based on his observations 

of the way he and others use interactive computer systems- used to justify and guide the 

design of the COPILOT system's behavior 

2.C1 Multiple Activities 

The activity of someone engaged in the solution of an intellectual problem can be model'ed 
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as a single processor executing a set of coordinated sequential processes (coroutines), in ihe 

sense that: 

1) He is likely to shift his attention rapidly between different "processes." His reason for 
doing this may be generated internally (e.g. boredom, inspiration) or externally (the 
phone i ings; or perhaps the part hasn't come in yet). 

2) He may retain enough "state" information about an abandoned process to return to it 
again in time, or he may abandon it entirely. 

3) If the alternative is excessive unproductive waiting, he will often turn ':ii: attention to 
some unrelated subject (the processes need not all cooperate), returning to the task at 
hand when it is again possible 

4) He can carry some state information concerning a previous activity in i the next, often 
correlating the two in order to understand complex relations. After all, he is presumably 
pursuing some overall goal 

5) Although we have not modelled his internal behavior as true parallel processes (we give 
him credit for smgle-mindedriess), he can make use of several concurrent external 
operations (stove burners, machines, computer programs, or whatever), as long as they 
do not all require constant monitoring. 

6) He seldom operates very recursively, or even properly nests operations- the above 
coroutine-like model is a more accurate one than a simpler recursive model. 

2.C2 Single Language 

Symbolic communications between people (and between a person and his later self, for that 

matter) are primarily conducted by means of natural language.   The same language base is 

used for all areas of endeavor, although specialized lexicons (seldom specialized grammars) 

form dialects for specific topics.   All necessary symbolic activities are possible in a natural 

language 

For efficiency and brevity, people have added to their communication abilities in two major 

ways. 

I)     through formal languages (eg.   mathematics) which, though not contained in the base 
language, nonetheless have a (usually cumbersome) mapping into it. 

m*mm — ..,.  .. .,..■.^J.^...J-.^.. 
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2) through acronyms, abbreviations, and possibly non-grammatical colloquialisms, often 
understood by only a srrall segment of the population ("far out!"). These artifacts clearly 
m?p (though not always precisely) into grammatical forms in the base language. 

Providing good symbolic communication between the user and his system wil. be a major 

goal of this work. We believe that an IPS with a single input language, encompassing all 

system commands, can enhance this communicaiion. We share an emphasis on the 

importance of the single language idea with most IPS designers. 

2.C3 Non-Pre^iiiption 

A request for one's services is not always granted instantly. In fact, it is sometimes not 

granted at all. At any rate, having noticed such a request, one may respond to it 

immediately, queue it temporarily until some other task is complete, or ignore it entirely. He 

is not automatically preempted by a "service request"; he can continue what he is doing, or 

go on to something else entirely; nor must he take care of things in a fixed order. 

This non-preemptive pattern is often thwarted at the user terminal connected to a modern 

IPS,   Much of our attention will be devoted to correcting the situation. 

2.C4 Response Time 

In contrast, when one reques's a service, he would lue it to be handled at once. We would 

like to distinguish between the time required to complete a request, which we call completion 

time, and a potentially different interval, which we call response time: the time delay, after 

submission one request, until that request is acknowledged, and another may be submitted. 

If there is but one agent for execution of requests, these two quantities will probably be the 

same However, in an environment which supports multiple activities, successive requests 

may call for the initiation of concurrent activities, or they may terminate previous ones. If 

such activities are possible, then, in order to make maximum use of the concurrent facilities, 

the response time should be short, independent of the completion time. (In our experience, 

this time should be short compared to the time required to make the request, and should 

seldom exceed one or two seconds.) Miller [41] has studied computer system response, 

determining empirically, for a variety ol situations, what kinds of delays people will tolerate. 

These times range from a second or two, in highly interactive situations, to fifteen seconds or 
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more for complex requests. Miller's report does not make our distinction between completion 

time and response time. However, in most of the situations he cites in which people will 

tolerate only short delays, it is rapid response which thev seem to be seeking. 

Simon, in [51], studied a related time interval, which he called the "minimum human 

response time". This is the smallest "time slice" which one can efficiently use to work on a 

task, particularly ir* .ie context of waiting for some possibly unrelated activity to complete. 

In Simon's experience, this time is approximately ten minutes. We do not dispute it, but we 

do believe that the "minimum human response time" could be reduced, if it were easier to 

establish the context necessary to switch to a new task. In a computing environment, this 

requires a system which is both non-preömptive and responsive. 

To summarize, people want to schedule requests for their services (output), but to obtain 

rapid UtMlUon to their own requests (input). This double standard is not always possible in 

dealingi wich other people, but we can try to optimize it in an IPS. 

.: 

! 

2.C5 Minimal (output) Modes 

This topic introduces another input/output double standard. People are capable of 

understanding stimuli which are context-sensif.ve: whose meaning depends on the 

environment, or context, in which they are presented. English itself is internally context- 

sensitive, although normally only in a quite localized fashion- paragraphs can generally 

stand alone. 

In general, we think it is desirable to reduce the context-sensitivity of what one must say 

(output) by reducing the number of "states", or "modes", which impose different 

interpretations on his communications. The single-language criterion also aids us here: a 

sentence, especially one intended to convey information unambiguously, should always "mean" 

the same thing. This cannot be true if disjoint (or even worse, partialiv riisjomt) languages 

are provided for different purposes, since in the latter case a "mode" must be established to 

determine which language to look for. 

We do not mean to imply that the same results will obtain, no matter what the situation (or 

state), when a jiven utterance is uttered, or when a given command is typed. There are 

environmental conditions which influence the interpretation of communications. This context 

is usually implicit, however, and need not be included in the message. 
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We do not even intend that every statement be meaningful in every instance. Clearly, there 

are sentences in nearly any language which are senseless, impossible, or merely silly under 

some conditions. However, normally one can at least understand such a sentence, to the 

extent that he can respond that it is senseless, silly, or impossible- and why. We would like 

to preserve this behavior 

We will, therefore, require of our non-preemptive, single language IPS. that it must allow a 

user to express anything in that language, at any time- even if it is meaningless In context- 

a system without excessive "modes" 

2.C6 Maximum (input) Context 

While one prefers to supply as little explicit contextual information as possible when 

conveying information (output), one absorbs information (input) most readily when the 

environment in which it is presented is as completely described as possible The more one 

knows about a situation, the more capable he is of handling his part in it. Our goal should 

be to provide as rich a context as possible, without including irrelevant information which 

could obscure understanding. Further, it is best if this information is continually present, 

continually up to date 

When it is possible, we think that contextual information is best presented visually. This 

sort of presentation can be made to satisfy the "continuously accurate" requirement, without 

flooding our sensory channels- particularly because visual input also satisfies our non- 

preemptive requirement- one need not look at everything all the time, and in fact can select 

what to look at. and when to look at it. 

2.C7 Access to Information 

This topic ii closely related n the previous one. which requires that the available 

information be presented as completely and coherently as possible. Now we wish to require, 

in addition, that as much informativ as possible be available (accessible). One is clearly 

more able to deal with a situation or cbject when all its components are accessible (to MC and. 

hopefully, to change) than when he -.nust treat it as a "black box" (or perhaps "gray box"). 

II 
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Having made the distinction between symbolic and "manipulative" operations, we would like 

to sotten it somewhat. Although we do not normally do it, we can describe nearly any action 

in words there is a way to map a given action into an "equivalent" symbolic form. We will 

find this duality very useful in the sequel. 

12 
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2.C8 Non-symbolic operations 

Most of the topics we have discussed have dealt with symbolic terms; with language, its uses 

and effects But a remarkable number of things people do are not (at least at the conscious 

"interface") expressed symbolically at all, they are instead "manipulative" activities. We affect 

things directly by moving them; we sense them directly by touch, sight or smell. 

.; 

As an example, after one has become experienced at driving a car, he is seldom aware of 

turning the wheel or manipulating pedals; instead, he turns the car, speeds up, or slows 

down- another example of levels of internal mapping which involve intermediaries at other 

than conscious levels. Perhaps a better example is the playing of a musical instrument: one 

does not (except when learning something difficult) think in terms of plucking strings, 

pushing keys, or blowing air. He thinks in terms of producing notes, or even melodic 

phrases, of the desired pitches, amplitudes, durations, and tonal quality. 

Examples of these operations for a computer terminal might be functions performed by a 

single keystroke, perhaps qualified with "control key" modification, or by light pens, function 

kp-boards, etc. The conscious mind is aware only of their effect. This feeling applies 

especially to those operations which have an immediate and visible effect- for instance, the 

movement of cursors or the deletion or movement of text on a display screen. 

What we are advocating here is that the way in which such repetitive operations have to be 

performed be made simple enough that one thinks of them (while doing them) only in terms i 

of their efff :t.   In this way they tend to lose any symbolic meaning and to become practically U 

bodily extensions. 

! 
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2.D   THE BEHAVIOR MATCH REVISITED 

■»^M^have attenipted in the preceding section to indicate some characteristics of the IPS user 

which the IPS must "compbment" to achieve an acceptable "Behavior Match". Before we 

proceed to an analysis of the success of previous systems in this regard, we should attempt to 

clarify what we mean by "complementary" behavior (recall the definition of Behavior Match 

in Section 2.A). 

Whatever the means of communication, the user does not really "do" any of the things he 

requests: the computer does them, under the control of the interface routines of the IPS. 

Thus before he can communicate a message to his system, he must translate that vhought, 

using his own internal model of this interface, into the series of symbols which will 

accomplish the transmission. 

This internal model must adequately represent the real thing, given the low tolerance of most 

language systems for syntactic errors ($). In this sense the Behavior of model and system 

must be quite similar; i.e., their Behavior must match precisely. What we wish to achieve, in 

these terms, is a system which allows natural, intuitive, and convenient translation from the 

original thought to the model. 

(t) Teitolman's DWIM system for BBN LISP [53] (see Section 3.F) is intended to reduce the 
necessity for such precision by defecting and correcting simple errors (mismatches). We have 
not treated error detection, correction, or minimization in this treatise, although in Section 
9 C5 we have attempted to indicate how our non-preemptive Methods can be used to soften 
the effect of errors. 

13 
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CHAPTER 3 

A SURVEY OF REPRESENTATIVE INTERACTIVE PROGRAMMING SYSTEMS 

To the extent that designers of computer systems have considered behavior match issues, we 

believe that the designs reflect the designers' views of adequate user models: that the user 

could think quite naturally in the terms necessary for modelling the system's behavior. Just 

as we have suggested above, for example, that a person "is" a pseudo-parallel processor, the 

designer of one of the early systems described below might have said that a person "is" a 

finite-state automaton We see a remarkable progression m complexity from early systems to 

today's IPS systems, reflecting perhaps an increased respect for the complexity of human 

processes. (*) In the discusiion that follows, we present several different IS designs, each 

based on a different interface behavior model. Following the description of each model is a 

list of real systems which approximately fit into the category defined by the model. 

3 A   BATCH COMPUTING SYSTEMS 

We mention these systems only for completeness. The meager control languages provided for 

these systems are adequate to define the environment and resources necessary for a run, and 

to specify the order of application of programs in a multi-step job To be sure, systems 

exhibiting evidence of human engineering are welcome to batch users. In fact, we could profit 

by applying some of the lessons learned from IPS design to the batch regime. However, there 

is not much to be learned about the problem at hand from analysis of batch systems. 

We include in this category systems which use terminals for so-called remote job entry (RJE), 

since they are not truly interactive systems. 

<*> The structure of this section is largely the result of a conversation with J. Mitchell. 
16 
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3.B.   EARLY INTERACTIVE SYSTEMS (FSA/IPS) 

The terminal interface of some early time-shared computer systems (examples of which thrive 

today) provide an excellent example of what we call the FSA/1S model. Here the system is 

portrayed as a sort of Finite State Automaton (FSA), which enters a multitude of states, based 

on current input and previous states. These states typically fall into a much smaller set of 

classes (modes), as we shall explain. 

(Based on the arguments in the introduction to this chapter, the implication of the FSA 

design is that the user, also, is fundamentally content cast in the role of a very clever FSA. 

He must maintain in !iis head a model of the current state, along with the meaning and 

legality of the commands he might issue while in each state. Given this human model, the 

FSA/IS system provides an excellent behavior match The same sort of argument can be 

made for all of the systems which follow.) 

This terminal interface model, though failing many of ojr behavior match requirements, has 

performed admirably, especially in light of the accompanying software systems (compilers, 

loader:;, and the like), which arc typically batch-oriented, and not suited for modification to 

highly interactive situation^. Elements of this design exist in nearly every subsequent 

interactive system, though some of the shortcomings have been overcome. 

The diagram of Figure 3-1 is a simplified state transition graph for the Digital Equipment 

Corp. TOPS-10 time-sharing system, written for the DecSystem-10 computer, a system we 

consider typical of the FSA/IS discipline. 
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To the reader already familiar with this common' organuatlon, the interpretation of this 

diagram should be particularly straightforward. The user approaches the terminal in Free 

mode (both system and user, according to our assumptions!) He (and the system) enters the 

basic System mode using a restricted, and unique, Login language in erchange, then proceeds 

to work . 

While in System, or Monitor mode, the user communicates with the system using a verb- 

argument syntax (e.g., "RUN X[20,35]" or "COMPILE PTRAN"). which is interpreted 

directly by the operating system. If this syntax appears elsewhere in the system (in other 

modes), it is due to mimicry, not to any global design. Some of the Monitor mode commands, 

notably those requesting simple status information ("What time is it?") perform their 

functions, then return immediately to Monuor mode to await additional commands. The 

more interesting commands, however, cause other programs to be mapped into main memory 

and run, entering one of n multitude of soca'led User states (in User mode), whose input 

grammars depend entirely on the program implementations. From here on, the system makes 

1 ttle modal distinction. The user can, however, in his programs, define his own substates, 

specifying differently at different times what constitutes acceptable communication. 

. 

Control passes from User mode back to Monitor mode either by program request (only 

indirectly influenced by user input), or by use of the special interrupt character, CALL (or 

control-C), whose function is always to stop operation of the User-mode program and to 

return to Monitor mode. 

! 

This (crucial) CALL feature falls short of providing the non-preemptive environment to 

which we subscribe, but its existence leads us to the following interesting observation: 

although the user of this system has no direct access to it, at some level of implementation- a 

very low one, in this instance- a non-preSmptive discipline is in effect. The system responds 

in a suwlar way to each character as it is typed, echos it on the output device (printer or 

display), analyzes it for special meaning (e.g., CALL), then either arranges for the return to 

System mode or dispatches the character to the process currently preempting the terminal. 

Thus, though control of it has not been granted directly to the user, the value of a non- 

preemptive regime has long been implicitly recognized. 

. ! 

At this level, the non-preemptive discipline reduces simply to an interrupt-dnven. multiple 

process priority discipline. This example illuminates the intimate connection between non- 

preemptive and multiple process organizations. 

19 
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In general, no simple way exists In these systems to suspend one action temporarily, in order 

to perform some other (perhaps unrelated) action, then to return to the original task; mode 

changes are usually destructive In that sense. More generally, little, if any, information about 

previous states is retained by these systems - such memory must be provided by the user. 

3.B1 Attribute Analysis 

Let us now analyze systems of this character with respect to our Behavior match attribi tes. 

An attribute is classified as variable if it is typically absent, but could be included in a system 

without altering that system's basic category: 

1) Multiple activities: nonexistent or cumbersome to use. 

2) Non-preömption: poor. As we have seen, the entire design embraces the concept of 

preemption of the terminal by processes implementing different modes. One must in 

every instance type only what is expected at that point, or else a specific (e.g. exit or 

substate-entering) or general (e.g. CALL) "escape" character to change modes. 

3) Response time: poor. The edit/compile/ run/debug cycles typical of these systems are 
long and sequential, often requiring manual intervention between steps to initiate the 
next.   No fruitful work can be done during, for example, the compile phase. 

4) Mode reduction: antithetical   In such systems there is a mode for every purpose. 

5) Single Language, not provided. There is generally a different language for each mode. 

6) Accessibility: variable. In a computer system we desire accessibility to such things as: the 
variables of the running environment (the data); the statements or functions of the 

language (the program); and, hopefully, the control structures of the system (the 

interpreter). 

The only global program and data variables in the TOPS-10 system are data and 

program files on secondary storage. Any other data are defined and controlled by the 
programs which run in User mode; the accessibility of these data is thus determined by 
these programs, varying with each instance. These operating systems do not limit the 
ability of their subsystems to provide good accessibility; most of the systems which we 
will discuss were implemented using the facilities of general-purpose FSA/IPS systems. 

20 
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7) Context: variable, typically poor. Later we shall assert that a system cannot supply the 
continuous context information we advocate without display devices with rapid random- 
access capabilities. There is in principle no reason that ich contextual displays could 
not be integrated into any IS. However economic considerations have legislated heavily 
against their use. Ironically, many batch systems have fairly good context displays for 

their   operators   [25]. 

8) Non-symbolic features: variable. The manipulative operations we envision could be 
provided in any IPS, regardless of category. We know of only scattered instances where 

any have been provided. 

3 B2 Representative Systems 

The command languages of most general purpose time sharing systems fit this category. In 

addition to the TOPS-10 system [10] used in this section, they include the pioneering 

CTSS system at MIT [9], The Stanford Computation Center time-sharing facility [25], 

as well as newer systems like TENEX [5], MULTICS [43], and ITS [17]. The latter 

three do possess facilities for controlling multiple processes, by explicit assignment of the user 

terminal to one process at a time. Nevertheless, for the most part they behave as FSA/IS 

systems. 

3C.  EARLY DEDICATED-LANGUAGE SYSTEMS(FSA/IPS) 

This class of programming system was developed for use whr.re the needs of the user 

community did not warrant development of a general time-sharing system, or where the need 

for simplicity and comprehensive diagnostic information was paramount. Although, unlike 

the FSA/IS systems, these qualify as IPSs (using our requirement that an IPS be built around 

a single language), these systems are actually more restrictive in many ways. 

The terminal state diagram for BASIC [29], which we consider representative of this 

system type, appears in Figure 3-2. Operation of the system alternates between the edit 

phase, in which programs are created, modified, fetched and stored to secondary storage, and 

the execution phase, in which the meaning of user inputs are defined by the user's program. 

The number of mode classes is not really reduced from our TOPS-10 example, but the 

number of User mode states is sharply reduced, restricting the user to the single language. 
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Figure 3-2. FSA/IPS Behavior of BASIC Terminal Interface 
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3.CI Attribute Analysis 

FSA/IPS systems have about the same degree of succesj at meeting the behavior match 

requirements that FSA/IS systems do. The one possible exception is the single language 

criterion. BASIC does not even really qualify as a single language system, though, but is 

simply a restricted (or dedicated) language system; there is no intersection between the syntax 

of the program editing commands and that of the statements which are edited. 
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3.C2 Representative Systems 

BASIC and its derivatives are representative of this "compile and go" class. 

3.D.   REDUCED MODE SYSTEMS (FSA/IPS/RED) 

These are the first truly interactive systems we have encountered. In these systems the user 

can switch rapidly from program modification to partial program execution to variable value 

query. They are also the first really single-language systems we have seen: statements which 

implement user algorithms resemble in syntax those for modifying program text and for 

controlling (starting, stopping, interrupting) execution of the algorithms. Also, in most cases, 

either type of statement is legal whether executed "directly" (typed in at the terminal, 

interpreted and obeyed immediately), or "indirectly" (as part of some previously created 

program). 

Our archetypical system of the FSA/IPS/RED type is JOSS [71 Figure 3-3 is an 

approximation to the console state transition diagram for JOSS. Chiefly due to the 

implementation of all functions as part of a single language, the segmentation of programs in 

that language into parts and subparts (steps) which can be executed separately, and the 

implementation of an interpreter for the language which can to perform these functions 

incrementally, the designers were able to reduce greatly the number of modes. In JOSS, 

there is the one predominant Command mode, the nearly irrelevant Free mode, and the 

mode entered to accept input to the user program, on program request. 

A system of this sort could presumably support any programming language. However, most 

do not feature any but the simplest name scopes (static or dynamic), since the command 

routine operates only at the "top level" of the system, requiring suspension of user program 
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execution (and perhaps loss of local context) before control returns to it. JOSS, for instance, 

has only a single naming level (all variables are global). Others allow simple local 

parameters to procedures, ta other syster %, including some LISPs [49], it is possible to 

inhibit loss of local context after an error, or after an otherwise interrupted computation. 

Because the nested User structure to be exhibited in the next section does not exist in these 

systems, full interactive control is usually not possible in these suspended environments; 

typically, only variable query and "backtrace" operations are available. 
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Figure 3-3. FSA/IPS/RED Behavior of JOSS Terminal Interface I 

— --■ 
.. ■ 



I 
I 
I 
: 

i 
i 

3.DI Attribute Analysis 

1) Multiple activities: poor The single program task may be mterruptable, or even 
continuable, but only trivial operations may be performed in the interim without 
destroying the state of that task. Complete freedom does not necessarily exist to examine 
all active data using terminal commands. 

2) Non-pie#mpUon: not provided 

3) Response Time: fair. Unless the user's program is running, preventing the system from 
listening, commands are obeyed quickly (depending on system load, of course). Gaining 
control can sometimes be a destructive process, however. 

4) Mode-reduction: good Unless the terminal has been preempted for user input, nearly 

any statement or command is legal whenever the system is willing to listen. 

5) Single language: good   All but user-defined commands ar'? in the same language 

6) Accessibility: moderately good. In some systems one can examine the state of any data 
item, but only because the complexity of data declaration is sufficiently restricted In 
others, one is denied complete freedom to examine all active data from the terminal. 

7) Context: variable These systems do not present data continuously (do not support 

displays) although they could. They therefore fall short of our context goals. 

3.D2 Representative Systems 

We have placed JOSS (and systems patterned after it: e.g., AID [II]), along with RUSH 

til PL/ACME [63], QUICKTRAN [13], and unaugmented (t) versions of some 

LISPs (e.g., [49]) in this category. 

(t) LISP is self-defining, allowing the user to write a command loop which, for the most part, 
upgr?des the system to the next category. 
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3.E.   NESTED USER SYSTEMS (DPDA/1PS) 

The systems we have seen so far have restricted the complexity of the programming 

languages they could support Major attributes of modern programming languages are the 

naming and data allocation facilities which allow multiple recursive or parallel instances of 

the data environments for procedures, and multiple use of names by scope-qualification 

Most of these facilities have been sacrificed in the IPSs we have described, because otherwise 

they could not provide for the user convenient ways to "manipulate and roam around in the 

information space which is of interest to him when it is of interest to him." (t) In our terms, 

they would provide inadequate accessibility. 

The systems of the next category extend and modify the role of the user (or his 

representative system interface, if you wish), greatly extending his ability to interact with 

complex environments. 

($)    From    [44J 
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Our model system this time is LCC [4SI In LCC the user is modelled as a recursively- 

instantiable procedure "written" in the language supported by the IPS (see Figure 3-4). The 

system interface still interpret: input as program statements, generally executing them 

consecutively, in FSA fashion However, the means for accomplishing this are now more 

explicit: an activation record for a PAR i 0 (or User) procedure exists on the stack, defining 

the environment of the user Each statement submitted from the terminal is treated as if it 

were (had always been) the next statement in the User procedure. Such a system resembles at 

the user interface (or modeli the user as) a finite state automaton with access to a push-down 

stack for data and previo-is state information Such a device is known in automata theory as 

a Deterministic Push-Down Automaton, or DPDA; thus our designation of this system type. 

LCC is quite representative of the DPDA/IPS 

The differences between DPDA systems and other FSA system are not striking at the "top 

level"- while the keyboard input is driving the original outer-level User procedure instance. 

However multiple instances of User procedure, at differen' recursive levels, are permitted. 

The running program may instantiate a User procedure oircctly. by a procedure call; or an 

instance may be created synchronously (via a preset breakpoint), or asynchronously (e.g., an 

unexpected procedure call [47]) in response to a user-initiated "attention" signal.   In any 
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case, only one User procedure may be active- responding to the keyboard- at any instant, 

and then only when that User instance is the most recently entered procedure. This 

automatically prevents any but the most deeply nested User procedure from being active. 

Now it is possible to establish a precise interpretation for the meaning of names typed by the 

user they are interpreted in the environment of the User procedure in control, just as names 

are interpreted in any other procedure. It is therefore possible to provide accessibility to 

variables in any environment, by arranging to instantiate a User procedure which can "see- 

that environment. 

This arrangement still does not meet all our accessibility requirements. For instance, in any 

recursive language, for a given User procedure instance there can be variables hidden from 

view (using normal access methods) due to recursive instances of the same variable. In Algol- 

like languages, the problem is worse, each instance of the User procedure must be considered 

to be declared within the procedure from which it is called (or which 't interrupts- it 

amounts to the same thing) in order to "see" the data for that procedure. Not only is this 

difficult to implement, but it also does not provide access to those active data not in the 

lexical scope of any User procedure instance. 

LCC does not suffer from the latter Ulsiol-induced) malady, but shares the former with other 

systems. It solves them by providing rather clumsy (but complete) means for violating scope 

restrictions, through extended names or explicit scope specification, indicating environments 

of interest. We feel that some sort of scope-violation mechanism is inevitable for any IPS 

which provides both a powerful enough language and an accessible enough system. 
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Figure 3-4. DPDA/IPS Beliavior of LCC Terminal Interface 
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S.EI Attribute Analysis 

i) Multiple activities: fair These systems, by allowing multiple instances of User procedure 
(or a similar construct), gam some of the control powers we advocate, at least allowing 
the user to switch his environment of interest without destroying previous information 
(losing his place) However the system still has too much of a hand in when and ho'.v 
this switch is made, which leads us to the following: 

2) Non-Pre«mption: poor. A breakpoint or explicit program call to the USER function 
preempts the terminal for the new instance and context. When the user gains control via 
"attention", he is the instrument of this preemption. This facility lessens the preemptive 
behavior, but does not eliminate it. 

3) Response time: moderately good. When a User procedure is active, response is good by 
all our measures. During a lengthy operation (e.g., a user's problem program execution), 
a new User instance can be asynchronously instantiated, again providing good response 
time, at the expense of having to remember (with some system help) to return control to 
lower levels later. 

4) Single Language, Modes: as before, good. 

5) Accessibility: pr ?ent, but impaired. In most of these systems, the complexity of the 
name and allocation structures has increased slightly beyond the ability of the user 
interface to accommodate it 

6) Context: variable 

3.E2 Representative Systems 

LCC [45] and all LISPs, at least with appropriate user-provided functions, perforrr as 

DPDA systems BBN Lisp [53] exhibits this organizanon and, as we shall see, surpasses it 

in srme important ways. There are also elements of DPDA behavior in Kay's FLEX design 

[28], upon which we also intend to elaborate, for it too exhibits major behavior match 

improvements over the systems in this category. The current incarnation of the ECL System 

[58], under refinement at Harvard, seems to fall into this category. We shall discuss 

Mitchell's SLICE system [44] briefly, chiefly because of improvements in technique and 

human engineering attributes which we have not stressed. Other DPDA/IPS systems include 

APL   [26]   and   CCS   [50] 
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3,F.   ADVANCED IPS SYSTEMS 

In this section we will consider the salient behavior match features of recent IPS tys.ems, or 

designs, which have provided much of the guidance and inspiration for this work. 

3.F1 BBN LISP 

This system [53] behaves mostly as a DPDA system, with several distinct modes in its FSA 

component, some of the additional modes provide function editing capabilities and special 

facilities within breakpoints. Of Particular interest to us are the contributions which 

Teitelman has made to BBN LISP. These facilities first appeared in his thesis, [54], and 

have since been presented and elaborated in [53], [55]. 

Teitelman shares with us the desire for a system whose behavior complements the user's, 

aiiuwing him to work more efficiently and effectively. His chief emphases, however, treat user 

attributes which we have not addressed: 

1) Errors. People make errors when they speak, write, or type. Simple typographical, 
logical or spelling errors do not usually interfere with the comprehension of messages T 
the recipients are also people. It is therefore irritating and diverting to be forced to 
correct such simple errors in order to be understood. Most IPSs are very unforgiving of 
errors. 

If the User can anticipate more complex errors or exceptional conditions, he can have his 

program handle them by advising selected functions to take specified temporary actions 

before, during, after, or in lieu of their normal operations. 
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:. 2)     Repetition.  A common act is to develop, by trial and error, a method for accomplishing 
something, then to apply that method again when similar situations arise. 

Teitelman's provision for the first attribute is the DWIM (for "Do What I Mean") facility. 

This constitutes a refinement of the User procedure/system interface: DWIM routines 

intervene before the User procedure is called. They examine the reason for calling User 

procedure, and try to handle the situation themselves (e%., by correcting simple spelling 

errors, or simple parenthesis blunders.) In the most common configuration, DWIM simply 

notifies the user of its actions and returns to the caller with the error corrected. Only when 

DWIM fails to find a solution does it invoke BBN-LISP's User procedure analogue. 

 -■—     -  



1 
1 
I 
ü 
I 
B 
D 
;; 

D 
.: 

D 
:: 

:: 

: 

i 
i 
r 

It is quite often possible for the BBN LISP user to cancel the effect of an operation, even a 

complicated one. using the undo command. This feature is a powerful error-correcting tool 

in combination with the DWIM features. 

If a user anticipates the need, he can arrange, in most IPSs. to repeat a complex sequence of 

operations: he can create a macro or function to do it. then call it repeatedly. However, if he 

has simply carried out this sequence of operations, he must then re -eate them in order to 

repeat them BBN LISP maintains a History List of recent terminal operations, typically the 

last thirty or so. One can redo one or more recent operations by referring to entries in this 

list. One can also save a sequence of History entries for permanent accessibility as a Lisp 

function. We have attempted to refine this facility in our system (see Section 6.A1, the UCP 

Scene) 

3.F2 SLICE 

The system described here is the one Mitchell uses in his thesis [44] to describe his IPS 

methods. His system, a derivative of LCC. shares with LCC the DPDA/FSA/RED 

classification, and would submit to essentially the same attribute analysis. Its novelty lies in 

its translation algorithms. 

Mitchell demonstrates that there is a spectrum of possibilities between a purely interpretive 

and a purely compiled system. He discusses the merits of the two approaches in terms of the 

inherently conflicting qualities of flexibility and efficiency. Flexibility is the ability to modify 

program and data elements interactively, to inquire intelligently about program operation, 

and to intervene in the flow of control. Efficiency in this case is a measure of the speed of 

execution of the user's program 

Mitchell supports his view that flexibility decreases while efficiency increases as one traverses 

the spectrum from interpreted to compiled programs. He then describes an interpreter-based 

system which illuminates his contentions. Mitchell's system interprets the source program by 

compiling and immediately executing sections of it as they are encountered, retaining the 

compiled code segments as a fortunate side-effect. By reusing the compiled segments as long 

as they remain valid, he obtains a system which smoothly traverses the spectrum from 

flexibility to efficiency as an algorithm is perfected, and as the frequency of program 

modification decreases.   The keys to his methods are the algorithms and data structures he 
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developed to detect and correct segments made invalid by modifications to source statements 

and declarations. 

We shall have more to say about Mitchell's findings in Section 8.E6, for we have borrowed 

heavily from them in our translation methods. 

S.F4 FLEX 
The FLEX mini-computer and extensible language system form the central subject of Kay's 

dissertation. The Reactive Engine [28]. This system (and its successors, for it is still in a 

state of evolution), until now existing only in experimental versions, gives one as much power 

to define and control his own language and programs as any now available, on machines of 

any sue. Kay has combined theories of language, software, and machine design in a 

comprehensive proposal for an easily learned, personal, and very powerful system. 

In the domain of our Behavior Match attributes, FLEX and its derivatives possess qualities 

which we have found missing in other systems. Kay's philosophies have strongly influenced 

our design. 
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J.F3 ECL 
ECL is the result of restirch begun by Wegbreit in his thesis [57] on extensible languages 

for IPSs. The current effort is a I .ge project, directed by Wegbreit and Cheatham [681 ai 

Harvard, dedicated to the creation of a software laboratory. An interpreter and eqr.valent 

compiler for the ECL language. ELI. will allow operation at both ends of the 

flexibility/efficiency spectrum. A major goal of ECL is application of sophisticated software 

aids to the development of very large, complex systems (for instance, an automatic 

programming experiment) M without sacrificing ultimate efficiency. 

-    ■ 

Most of the novel aspects of ECL lie in areas not directly treated in this work; efficient 

extensible language design is foremost among them. In our Behavior Match terms, as we 

mentioned. ECL is at present a DPDA/FSA system. We are unaware of plans for enhanced 

terminal facilities at this writing. However, we believe that our methods would apply very 

nicely in the ECL environment. 
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FLEX is a disi-ilay-onentsd system, Incorporating a graphics tablet and a special keyset for 

convenient manipulative inputs, along with a standard keyboard for symbolic input. The 

built-in, extensible FLEX language allows concurrent operation of multiple processes. The 

full-blown system, written in FLEX (*), makes copious use of this ability, using parallel 

components in the hardware to allow scanning, parsing, compiling, and execution of 

programs to proceed concurrently. In this way, though a structured text representation of a 

program is the only permanent (and displayable) representation of that program, acceptably 

efficient execution is maintained. The system provides powerful display techniques, for 

editing and observing the operation of programs, for displaying structured textual and 

graphical data, and for "echoing" the user's input of structured data. 

i 
: 
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In our classification system, FLEX is a DPDA/IPS/RED system, whose stack environment is 

extended to the stack configuration (similar to that used in the B6700 computer [47J or in 

Simula implementations [14]) needed for the operation of concurrent active processes. 

3.F5 FLEX Attribute Analysis 

1) Multiple activities; good. The system makes use of multiple processes, and the user has 
control of them, both in his programs, and directly at the terminal. 

2) Minimal Modes; excellent, due to its single input language. 

3) Single Language; excellent. All commands are expressible in the user-extensible 
language. A few "invisible" edit commands duplicate some FLEX functions, for 
convenience in editing. Like Lisp. FLEX is "homoicomc": the executable and external 
representations of programs are essentially the same. 

4 Accessibility; good. All active data are accessible to the User procedure, and the user can 
activate a User procedure in arbitrary active processes. 

5 Context, very good. The display facilities allow presentation of user programs in 
context, and observation of their operation in that context. The user is free to provide 
additional context-rich displays in his programs and subsystems. 

(«) We are being intentionally vague about the distinction between the hardware and software. 
The machine is microcoded, essentially implementing the nucleus language StXJ the system 
kernel. 
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6 Non-symbolic operations: excellent. The combination of the keyset and tablet supply 
impressive manipulative tools which enhance editing and graphical operations. The 
short, easy editing commands, and the ability of the user to extend his language, 
supplement these tools. 

7 Non-pre#mption: almost provided. The recursive (and now concurrently recursive), 
nested USER concept is maintained in the breakpoint and terminal interrupt structure 
of FLEX. It is not made clear what happens if two processes attempt to break at once. 
The user may "ride piggyback" on the program evaluator (observe its interpretation of 
the execution of his program, step by step), in order to follow and control the flow of 
operations in his multiple processing environment. 

Kay would not necessarily stress these points as the most important topics of his work We 

would therefore be doing him a disservice to suggest that we have captured the "essence of 

FLEX" in this short report. The Reactive Engine is a comprehensive work, which has 

contributions to make to most areas of system design. 
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3.C.   ATTRIBUTE SUMMARY 

! 

Table 3-1 is a summary of the attribute analyses for the basic system categories we have 

studied.  FLEX is Included in a separate column, because it excels in many attributes. 

Table 3-1. Behavior Match Attribute Summary 

Catepory   FSA/IS FSA/iPS FSA/IPS/RED DPDA/IPS    FLEX 

Attribute 

Multiple Activities      ? - X • 

Single Language x                  • • V 

Non-Freemption - - X 

Response time • X • 

Minimal modes x X • 

Maximum context      ? ? ? • 

Accessibility                ? • • •y 

Non-symbolic ops.      ? ? ? • 

I 
These systems do not support this behavior; their implementors may not 

agree that such behavior is desirable. 

x    All or most of these systems partially support this behavior. 

?    This attribute is generally absent from these systems, although nothing in 
their basic designs prevents its inclusiori. 

•s   These systems support this behavior. 

D 
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CHAPTER 4 

DESIGN OF COPILOT 

In this chapter we shall use the criteria of Chapter 2 to help specify the design of our 

experimental IPS, COPILOT Here, we shall match the human traits to the corresponding 

desired behavior of the system We shall also introduce additional design decisions (choice 

of language, method of interpretation, etc.) with reasons for their choice, although these do 

not relate directly to the behavior match topics. Finally we shall present an overview of the 

COPILOT system, w :h emphasis on the ways in which it meets the design criteria. 

Subsequent chapters will present the COPILOT system in more detail. 

4.A.   ACHIEVING THE BEHAVIOR MATCH 

I ) 

4. AI Use of Multiple Processes 

If one accepts our assumptions, people can monitor multiple simultaneous external activities, 

and can maintain, at the conscious interface, multiple pseudo-parallel "processes", or 

"coroutines" of iheir own, while pursuing a task. They want to be able to schedule their own 

actions independent of the order or frequency of external requests (non-pre#mption), but they 

desire rapid response, at least by acknowledgement, to their own requests for services. 

To satisfy these requirements, we must first include faaii les, in the language and operating 

environment of our IPS, for the specification of multiple processes, allowing programs to 

instantiate, activate, suspend and terminate "simultaneous" operations. Thomas [56] defines 

a process as "an acllvHy comprised of a time-ordered sequence of actions". Within a 

computer system, a process is usually represented by an algorithm, specifying the sequence to 

perform, a collection of data elements upon which that algorithm can operate, and a pair of 

indicators, or environment pointers, which together identify the current point of operation 

within the algorithm, and the current active values within the process data By alternating 

among sets of environment pointer pairs, a single computer, or processor, can, in large part, 

simulate the concurrent operation of more than one process. This allows the creation of the 

multiple processing (or multiprogramming) environment upon which this work is predicated. 

We will describe the specific COPILOT implementation in Section 5.C4. 

37 

,-, 

■MMMHMi .—^ ■ ^ 



38 

*M* - -        ■ ' ^  

i 

The use of multiple-process facilities must be extended to the operation of the IPS itself. 

This, as we will show, allows us to provide the terminal user the ability to control processes 

directly. More importantly, we will use the multiple process discipline to provide the 

decoupling effect needed for non-preemptive control with good response time. Our process 

structure comprises a high-priority User process, operating a User loop (see Section 4.C2), 

to listen to the keyboard and respond to its commands, combined with a Post process to 

maintain a display of the status of all processes. This allows the user's problem, or target, 

programs to run in one or more target processes, undisturbed by terminal operations except 

where interaction is intended. Conversely, these target processes are not allowed to disturb 

(preempt) the User process, so they cannot bother the user save by supplying status 

information to the Post process. The User process replaces the recursively instantiated User 

procedure of previous systems. 

i 

We also hope to show that an IPS which uses multiple process structures properly can 

operate very efficiently, in its use of both time and space, particularly when the interactive 

facilities a-e not actively in use. 

y 

.1 

.i 

i 

. 

4.A2 Use of Displays 

We have argued that, ideally, one's statements should not be dependent on context for their 

interpretation (mode-minimization), but that one finds it easier to interpret communications 

when they are surrounded by appropriate contextual (environmental) information. 

Applied to IPS design, this need for adequate and current context, along with the need for 

rapid response, nearly eliminates the traditional hard-copy sequential-character computer 

terminal as a feasible terminal output device. To achieve our context match, we require a 

graphic display device, which we will henceforth term a display. The most common displays 

today are CRT-based point, vector, or raster-scan (TV) devices. 

Current display devices do not contain sufficient area and resolution to present even the 

minimum information we require to operate the system. Unless and until displays are 

improved, we must provide a reasonable alternative. Among currently possible alternatives 

are: 

i 

i 
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1) to use multiple display screens. 
2) to implement multiple virtual display screens.  This is possible if the available display 

hardware and software permits rapid replacement of a screen's contents. 
3) to provide a very flexible mapping of groups of lines to areas of the display screen, so 

that the user or program can select the most important text "windows" at any time. 

We have chosen to design COPILOT in terms of multiple display screens. It would not be 

difficult to modify the design to operate in the virtual screen mode of item 2 above. The 

third method would require considerable redesign; its performance under the best 

implementation would, we believe, be unsatisfactory, since it would require the user to 

remember too much about the complex, time-vaying screen organization. 

One important attribute of a display is its speed, allowing it to make large amounts of 

information, and therefore adequate context, continuously visible. Perhaps as important is 

its two-dimensional, random-access characteristics. We must be able to select and change one 

section of the screen without affecting any other section. Using these facilities we can 

partition the screen(s) into Regions at fixed positions, each devoted to a specific purpose: the 

display of a portion of a program, of some program data, of system status, or of information 

generated by the user. We can use this positional constancy to our advantage m achieving 

several of our other specific goals: 

1) In support of our non-pre#mptive control, the user knows where "o look for information 
generated by various runr cesses, so he need not constantly focus his attention on 
the output activity of his            i. 

2) These processes can make the user aware of important occurrences (e.g. breakpoints) 
without interfering with his current activities. 

3) Due to these visual reminders and event notices, the user can increase the number cf 
simultaneous activities which he can oversee without forgetting about them or losing 
track of their operation 

Our goal here is to give the user a window into his system which is wide enough and clear 

enough that there is nothing more he needs to see, and to give him tools for directly 

manipulating those things he can see. He should be able to perform most necessary control 

and modification functions by pointing and editing operations (again with random access) on 

this visual context. 
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4.A3 Single Language 

We have asserted that people communicate with each other in a single language, with lexical 

extensions for special purposes. Therefore, ID achieve our behavior match, we must provide 

our user with a single language with which to communicate with our IPS We must give it 

enough power not only to perform the user's algorithms, but also to carry out all terminal 

operations: editing, program control, variable-monitoring, etc. The User process need only 

accept statements m that language in order to provide all system functions. Conversely, 

because all terminal commands are elements of our language, the user cm write readable 

procedures whose execution he can substitute for sequences of termma', operations. If the 

user's recent commands are saved, he can even create these procedures from recent 

operations This facility eliminates the need for a special "macro" proviion at the terminal. 

(t) 

Any additional representations for programs (compiled code or other mterr al structures) must 

be totally hidden from the user: we must at all times preserve for him th'; illusion that he is 

operating directly in the chosen language. We we will describe methods for maintaining 

"equivalent" parallel representations for programs, their data, and other mfcrmation at 

several structural levels. We will maintain programs, for instance, as executable machine 

code, as parse trees, and in an intermediate "parse token" representation. 

(f) In the TVEDIT system for the PDP-1 [48], for instance, one can give a name to a string of 
command characters. He can subsequently issue a command, with that name as its argument, 
which will cause that sequence of commands to be executed. 
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4.A4 Abbreviation 

Our observations have suggested that people avoid repetitive circumlocution by developing 

formal concise notations or informal colloquialisms (jargon, slang), depending on the 

formality of the subject. It is usually possible to map formal notations unambiguously into 

sentences in the base language. There are also tasks which people do that are manipulative 

rather than symbolic in nature 

We have attempted to provide both abbreviation and manipulative control in our IPS 

design The User process, while accepting complete base language statements (sentences) will 

also accept shortened, abbreviated commands, each of which can be algonth-nically expanded 

into syntactically correct language forms.  We have attempted to implement the most common 
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simple commands as single keystrokes; in this way we hope to achieve a "manipulative" 

feeling for these operations in the mind of the experienced user. 

Because these facilities are available, we do not need to worry too much about the length or 

ungainly structure of our basic system-control statements Most of them turn out to be simple 

intrinsic ("built-in") procedures and functions, called with many parameters The standard 

abbreviations which use them typically supply all or most of the parameters by referring to 

current visual context. The result is a simple, flexible, and well-defined command structure, 

as well as a reduced number of baiic primitives. 

These abbreviations provide a simple macro processor, which responds to user input, and 

creates syntactically correct output We have devoted little effort to the design of this facet of 

COrMLOT, except to attempt to make simple operations simple to evoke, and to partition the 

system so that these front-end recognition algorithms can be replaced or altered, hopefully 

even by the user, without affecting the base language facilities. A good deal of relevant 

research into macro processing has appeared m the literature, and could be useful in 

improving the appearance of the system. For instance, [34] and [62] suggest possible 

improvements We do feel that the simple schemes described in the sequel will suffice to 

exhibit the power of the concept 

4 B   ADDITIONAL DESIGN DECISIONS 

The developments of the previous section follow directly from the behavior match 

requirements As we stated in Section 2.B, there is still room for a variety of systems within 

this framework This section will discuss some of these parameters, presenting the particular 

selections we have made in the COPILOT implementation To a large extent these choices 

reflect the environment in which this research was begun The goal was to provide an IPS 

built around a local programming system (SAIL, [52]) 

However, in each of the following cases, we seem to have chosen from the more difficult end 

of the spectrum of possibilities This is not necessarily laudable, nor even wise. It is, 

however, fortunate in the context of this document, since, if our appraisal of the relative 

difficulties is true, we can show that our IPS methods are widely applicable 
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4.BI Compiler Oriented 

The predominant form of IPS is built around an interpreter. In such a system, a source 

program is first converted to some internal form, retaining much or all of the symbolic and 

structural information of the original This program structure then drives a system routine, 

called an interpreter, whose function is to carry out the actions specified by the algorithm. 

In a compiler-oriented system translation is from source program to machine code, in which 

the algorithm can be executed directly on a computer. Neither the source, nor any 

intermediate structures used during the translation, are needed for correct program execution 

after compilation is complete. 

w 

Arguments in favor of an interpretive IPS are: 

1) The interpreter is an active agent throughout the execution process. It is therefore easy 

to include in the interpretation algorithm facilities for continuous monitoring of special 

conditions, dynamically set breakpoints, etc. 

2) Semantic information about all program entities (variables, expressions, etc.) must be 

maintained throughout execution. Interpreters usually use this to advantage, 

maintaining data types and other attributes dynamically. This late binding reduces the 
number of attributes the user must declare, and increases the flexibility of the language. 

J) Since this semantic information (and other data which is of interest to the user: names, 

etc.) is retained anyway, most systems provide sophisticated interactive features which 

put this information to good use. This kind of information is typically lost when a 

program is compiled. 

As we stated in Section 3 F2, Mitchell's factored interpreter methods can achieve the speed of 

compiled, though not necessarily optimal, code in a basically interpretive system. With lOfTiC 

loss of flexibility, we have adapted Mitchell's methods to a system which maintains iW user 

programs in compiled form, compiling changes as they are made, rather than just befor» the 

changed sections are executed This allows us to avoid periodic return of control tc the 

interpreter to check for modified sections, which in turn enables us to approach execution 

speeds competitive with batch systems This is an important attribute for very large systems, 

which often run for long periods before requiring any interactive operations. The 

disadvantage to compiling before execution is that we may recompile the same section of code 

many times without executing it Under some circumstances this will significantly degrade 

performance   Our method also makes it more difficult for us to accept incomplete programs. 

. 
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When they are not interacting with the user, Copilot code segments Ho not require the 

services, nor even the presence in memory, of the IPS routines cr data; nor do they require 

the presence of the higher-level program structures (e.g. text strings or parse trees). With 

proper memory management, this allows debugged, non-interactive programs to approach the 

size efficiency of conventional batch environments, without sacrificing the interactive facilities 

when they are needed. This performance is achieved at the expense of additional time and 

space overhead in the IPS routines In Section 8.D we will present these "select* ve 

efficiency" methods in some detail. 

4.B2 Static Block Structure 

Another important design parameter for any programming system concerns the meaning of a 

name in that system: its scope (lexical and dynamic range of validity); how its value is 

obtained, and when this binding of name to value occurs. 

None of these issues has any direct bearing on our mam topics of study. However the choice 

we make has a large effect on the behavior of the language, and therefore on the overall 

behavior of the system It has an immense effect on the difficulty of implementing the 

language in an interactive environment 

We must consider this choice in the light of our previous decision to build a compiler-based 

system. Here a modification to the definition of a name can have far-reaching effects These 

changes are particularly difficult to handle incrementally, if the code compiled to gam access 

to that name must also be changed; eg. if the name is bound to its access algorithm at 

compile time 

Such is the case, for example, with the static block structure employed in Algol 60 [46]. but 

not with the dynamic scope rules used to access variables in LISP 15. where all non-local 

names are bound to their values whenever they are referenced at run time. The problem is 

compounded in Algol 60 by the static lexical scope, which tends (in practice) to distribute cne 

effects of changing a global variable's declaration over a wider range than do other methods. 

True to form, we have chosen to use the Algol block structure, again picking the more 

difficult end of the spectrum of possibilities Fortunately, Mitchell's incremental compilation 

methods are equipped to handle this structure, and we shall use them in our design.   The 
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static Algol block structure affects our ability to display program variables conveniently, as we 

shall see. 

4.B3 Emphasis on Large Systems 

The typical IPS is oriented towards aiding the development of the small (however complex) 

program or system. Typical users are the beginning student of programming, and the 

occasional user They require that the system be easy to learn and use. that it be helpful, and 

that it be resilient to erroneous inputs. Efficiency is usually a secondary issue. When 

programs grow too large to survive economically in an interpretive environment, their 

creators must abandon these highly interactive and context-rich programming systems for 

more traditional batch-oriented methods. A few systems have survived the enlargement 

fairly well, among them most LISP systems The LISP user sacrifices some of the flexibility 

and interactive facility of the interpreter by compiling most functions. In exchange, he 

achieves a significant improvement in speed and size (The user may replace a compiled 

function by its mterpietable equivalent in LISP, so that if he anticipates the need to interact 

with a function before calling it. he may not suffer at all However, there is a danger that a 

function which must be interpreted may be executed frequently enough to dominate 

execution time) 

In our experience, very large programs need comprehensive interactive methods most. Small 

programs, even very complex ones, can usually be debugged with relatively unsophisticated 

aids. In larger systems, troubles are often the result of "second or third order effects". These 

effects can appear, due perhaps to new kinds of inputs, in routines long thought perfected, 

whose details may have been forgotten. Such a situation typically develops only after a 

I;ngthy input sequence which would be expensive (or in real-time situations, impossible) to 

reproduce. The user needs the ability to apply a wide range of interactive aids to the 

problem, wherever it occurs 

Many of our COPILOT design decisions are independent of the size and complexity of the 

progiams we expect to handle Where they are not, however, we have chosen in favor of 

large systems This is the chief reason for our emphasis on efficiency through compiled code. 

It is the reason we segment the system so that IPS features can "retract" when idle. It is even 

partially responsible for our choice of a static block structure, since this name structure 

sacrifices le's efficiency for its power than do other schemes 

ii 
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We do not claim to be alone in decrying the neglect of large systems in IPS designs. 

Remedying it is an important goal of the BBN block-compiled LISP features [53], the 

ECL system at Harvard [58], MPS and Smalltalk, being independently developed at the 

Xerox Palo Alto Research Center, and Lisp70 under development at Stanford. All of them 

are highly interactive systems, embodying many of the principles we support (see also Section 

3.F). 

4.B4 No Automatic Program Composition 

Most language processors pl?ce no restrictions on the assignment of language elements to text 

lino?, the indentation of lines, or the spacing between elements on a line. The composition, 

or physical appearance, of a program strongly affects its readability. Not inly do people 

disagree with each other concerning program composition rules, but a programmer may also 

vary the format he chooses from one program area to another. We have therefore chosen to 

do no recomposition of user programs, but to retain the form in which they are submitted. 

This does not preclude the provision of composition tools (e.g., Prettyprmt in BBN-LISP), as 

optional facilities. 

ii 
ii 
D 
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4.C.   AN OVERVIEW OF THE COPILOT SYSTEM 

The final sections of this chapter serve as an introduction to the next chapter, which is a 

rather detailed presentation of our experimental IPS implementation, COPILOT it). 

COPILOT, as it appears on paper, possesses most of the traits we have advanced. The 

current PDP-10 implementation falls considerably short of that, but is complete enough to 

demonstrate the feasibility and utility of our recommendations. Section 9.B deals with the 

aspects of COPILOT which we consider incomplete. 

Our overview consols of pictorial examples which should give the reader (and vicarious 

user) a "feel" for the uv of COPILOT. We begin with a description of what he would see 

on his screens 

(t) The name is derived from TeitelmarTs "PILOT" -- used with permission. 
45 
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4.C1 The Environment 

We will describe the system as It might appear Jtr- a significant amount of dialogue has 

taken place, taking us from the initial state to something more typical. The user faces one or 

more display screens- in our implementation we require at least two. Referring to figures 

4-1 and 4-2. the available display area has been segmented into several Regions, each 

displaying a portion, or window, of a text Scene. («) The configuration shown is a simple 

one. This user's entire target (applications) program requires but one process. It therefore 

contains at one time at most one active statement, which we will call the Instruction Point 

(IP). Our user has simplified the situation by selecting for display only those few Scenes 

required to understand the operation of his program, at the current IP and EP (or 

Environment Point, indicating the current "record of execution", or active data 

environment). We call the current time tl. 

The Region marked RPROC, available in one form or another in every IPS, is a 

representation of a window of the user's program. The program is stored and displayed in 

exactly the same form in which the user (or some program) created it. The context cursor 

("►" character) indicates the exact location of the IP in the program, at time tl. The language 

is MISLE, which claims Algol 60 as a distant ancestor. 

The RDATA Region is the visible representation of the instantaneous data environment, 

consisting of the names and values of selected variables at tl. The context cursor ("►") here 

identifies the Environment point (EP), indicating the variables for the procedure most 

recently entered. 

The pOYNA region reveals the dynamic state of the computation through a graphic 

representation of the process-stack configurations at time tl, while the RSTAT Region 

exhibits the current execution status of all processes (including in addition to the Target 

(applications) process the User and UCP processes which instantiate the basic IPS facilities). 

These four Context Scene types nearly exhaust the COPILOT repertory, although 

unlimited additional user-defined Scene types are possible. A few secondary COPILOT 

Scene types are described in Section 5.B5. 

(*) The labels at the top of each region name the entitles represented there. They take the 
form <region>/<scene>(type), where the type entry Is omitted If Its name Is the same as the 
scene. 
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RPROC/EOIT   (PROG) 
V 

BOOLEAN PROCEDURE EOITdNTECER COHflfiNO, EOIT.SU, EDIT.LIMEi 

INTEGER EDITJHAR,  PI. A}) STRING SI); 
BEGIN 

INTEGER SEflRCH.SCENE.  SEflRCH.LINE,  SEflRCHJHflR; 
INTEGER SEBRCH.CNT,   TinEO,  TIflEli 

* OTHER_EDIT_ROUTINES; 

BOOLEBN PROCEDURE SEfiRCHUNTEGER S_SCENE(  S.LINE,  S_CHflRi 

STRING UHRT); 
BEGIN 

INTEGER SCN,  LN,  CHR, CHlj    STRING SRCH.STR; 

I SERRCH.PRiniTIVES; 

SCN •■ S.SCENE;   TIHEl - SYSTEn.TIHEO  - TlflE«! 
t 

SEflRCH.CNT;  TIHEli 

FOR LN - S.LINE STEP 1 UNTIL GETLENCTH(SCN) 

DO BEGIN 

► SEBRCH.CNT > SEflRCH.CNT ♦ lj 

SRCH.STR ► GET.TEXTTSCN,  LN,  CHR+1,  999);  CHR . t, 

IP   (CHUFIND.STRINCCUHAT,  SRCH.STR))  THEN BEGIN 

SERRCH.SCN ► SCN;  SERRCH.LINE ► LN; 

SERRCH.CHBR ► CHR+CHU1;  RETURN(TRUE) 
END  Comment   rtcurtivt  search;; 

WHILE   (CHl»FINO.STRING("r,  SRCH.STR) i  DO 

IF SEARCH(FIND.SCENE(SRCH.STRICH1*1 TO 9991),   1,  9,  UHflT) 

RSTflT/STRT 

USER RURITING Us«r  Input 

POST BllfilTINC Postivcnl 

UCP STEPPED 

TRRG1 STEPPED 

1 

Figure 4-1. Typical COPILOT Scenes and Regions (screen I) 
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Figure 4-2. Typical COPILOT Scenes and Regions (screen 2) 
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USER-COflLOK...); 
BEGIN 

TflRGl.TE)(TPROC(...)| 
BEGIN 

TBRGI.EDITI...); 
BEGIN 

...1 SEPRCH.CNT « 12) 

...1 TinEl . 4.8$;   ...( 
T«RC1.SEWCH«(S_SCENE • 3 .... UHflT > "THIS 0NE")| 

» BEGIN 
...;  CM ■  17;   ... 

END) 
END) 

END; 
END) 
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Almost any modern computer terminal keyboard and operating system interface would suffice 

for a COPILOT-like system. Ours (see Figure 4-3) can commumcate with the program one 

character at a time when desired, increasing the possibilities for abbreviation. These 

possibilities are further multiplied by the TOP, CONTROL, and META keys. These keys, 

like the alphabetic SHIFT, allow multiple-interpretation of each character. TOP selectes an 

alternate character, while the remaining two simply qualify the selected basic code We will 

use "«A" for CONTROL-A. "^B" for META-B. and "•C" for CONTROL-META-C. 
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4.C2 Basic Dialogue 

The IPS must provide the routines for reading what the user types, and for invoking the 

facilities of the IPS in response. We have said that the nature of these interface routines 

establishes the behavior of the IPS, and thus the (interface) behavior the user must exhibit. 

We are now in a position to treat the interface behavior of our system in some detail. 

We will call that routine which controls the operation of the user-IPS interface the basic 

control loop, or User loop. Its existence is at least implicit in all the IPSs reviewed in Chapter 

3; usually it is quite explicit, forming the central control 'or the entire system. The basic 

User loops are remarkably similar from one system to the next. When the loop gains control 

(in a fashion to be described later), it performs approximately these functions: 

1) Accepts one command from the keyboard. 

2) Deciphers its  meaning, and carries out its intent. 

3) Reports the results, if necessary. 

4) Returns to step I. 

An elegant example of this sort of algorithm is the top level of most LISP systems (e.g. 

[49]). This algorithm, itself expressed in LISP, can be approximately stated in the LISP 

M-expression  language [40] as: 

L:X[];prog2[prir1l[eval[read[],NIL]];L] 

or, using the less pure PROG form 

progtML: print[eval[read[].NILi, fec[L]]. 

I 
I 
I 
I 

Although not all IPS implementations can express it quite this succinctly, they all have 

something like this Read-Eval-Pnnt User loop op .ating at the command level. Though all 

are similar, there are important differences between these User loops. One i« fhe nature of 

the commands supplied to the 'Read' function: in an IPS these commands are usually 

statements (Sexpressions) in the single source language. The User loops of the various IPSs 

can be distinguished from each other by the ways in which they are able to gain control, the 

times when that is possible, and the meaning of statements for a given instance of the User 
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procedure or process (the scope of interpretation). In general, they differ in the relationships 

between the basic control routines and the remainder of the system. 

To a user familiar with any of these systems the User loop in COPILOT will present no 

immediate surprises. Commands in the form of MISLE statements are accepted sequentially 

from the keyboard, and usually arc carried out in incoming order. Results of user 

commands, if they need to be reported, are revealed by changes in the text displayed in the 

appropriate Regions of his screen. As long as the operations to be performed are simple, 

commands and actions progress alternately, as in JOSS or BBN LISP. By describing- 

situations designed to demonstrate the non-preemptive aspects of COPILOT we shall soon 

shatter this illusion, but for the present we shall retain it. 

COPILOT commands are available for editing program (and other) text, for examining 

progiain data, for controlling program operation, or simply for r'.eir effect as statements (to 

test program sections, or for "desk calculator" operations). Figures 4-4 and 4-5 are 

continuations of the picture sequence begun in Figure 4-1. showing the effects of COPILOT 

operations on the contents of the user's screens. Regions are sometimes shown in different 

positions from figure to figure in these examples, to minimize the information in each figure 

(in the actual system, the Regions would remain in fixed screen and line positions). A Region 

is shown only when ihere is a significant change in its data. Each figure represents the state 

of the Regions it show: after execution of the commands which accompany that figure. 

The locus of user activity is indicated by the edit-cursor. a "A" character beneath a selected 

character position in one Scene. Most of the editing primitives (EDIT_CHAR, 

INSERT, LINE, etc.) use the location of the edit cursor. 

The entries in the COMMANDS column are the actual character strings the user types to 

perform the functions described in the examples. Entries in the EXPANDED column are the 

actual MISLE statements which he could type to get the same effect. Table 4-1 briefly 

describes the functions of the commands used in these examples. More complete descriptions 

of these commands and their expansions appear in Chapter 7. 
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Table 4-1. Commands Used in Chapter 4 Examples 

COMMAND        MEANING 

•n<cr> Move the edit cursor ("A") down n lines (n is a number, and <cr> 
means "carriage return"). 

•notF<char>        Move the edit cursor to the nth occurrence of the character <char> 
following the current cursor position. 

•: Move the edit cursor to the first token of the statement which begins 
nearest the current cursor p sition. 

<char> Place   <char>   in   the  current  edit   cursor   position.    Replace   any 
character which might already be there, 

•naD Delete n characters. 

•; Move the control cursor (instruction or environment point indicator 
("►")) to the edit cursor position. 

•, Move the edit cursor to the control cursor position. 

•B Set  a breakpoint (insert  a BREAK  statement, see below)  at  the 
statement nearest the edit cursor. 

•P Allow the process indicated by the DATA Region containing the EP 
control cursor (V) to proceed.   This is usually used  to resume a 
process after a break. 

•X Allow   the  process   identified   by   the   EP   cursor  to   execute   one 
statement, identified by the IP cursor. 

•S If the statement at IP contains subsratements, allow the process to 

continue to its first substatement.   Otherwise, this command is the 
same as »X. 

*&<string> Execute  the statement  specified   by  <string>,   in   the  environment 
specified by the EP context cursor ("►")• 

•*" Make visible the PROG, DATA, and DYNA Scenes corresponding to 
the most recently broken process. 
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•M<str><cr>       The string <$tr> 1$ the name of new data which replaces the current 
data in the Region containing the edit cursor 

#n,R Move the edit cursor to the last position it occupied in the Region n 
Regions away from the current one. where Regions are arranged in a 
reasonable circular order. 

- A statement containing only an expression means that that expression's current value 

should be displayed in a DATA Region (eg.. "J;"). 

- "BREAK(proc)H will cause the process named proc to suspend when it encounters the 

BREAK statement. 

- "I si; s2; .   sn } sm' , where si. etc. are statements, is equivalent to "BEGIN si;      sn; sm 

END"   See Section 7.D3. which describes these temporary statements. 

After examining these figures, it should be clear why some forn. of abbreviation is desirable. 

A user .hould not be forced to submit a "mouthful" like "MOVEXURSOR(...)" simply to 

reposition his edit-cursor although the same string might be the best form (for precision and 

legibility) to include in a program ("macro") to position the cursor. Consequently, we have 

caused the command "<cr>" (carruge return) to perform the same action as the 

MOVE.CURSOR operation in Figure 4-4. by a mechanism explained in Section 6.B2. 

In fact, the form marked COMMAND in^each of our examples is the preferred form of 

direct input to our User loop the expanded forms are always available for inclusion in 

progi ams and for documentation 

Notice that the cata display statements of Figure 4-5 are executed for their effect on the 

program, operating in the program's environment Others operate essentially in the 

environment of the system (the "interpreter"). We will show these relationships in detail in 

Section 7.C8. This distinction is a very important one. the subject of a great deal of study 

by Fisher [21] and others (for instance. Bobrow and Wegbreu m [6]) 
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BOULEPN PROCEDURE E01T( IWTECER COnflONO.  EOIT.SCN,  EDn.LINEj 
INTECER fDlT.CHOR,  Al,  B:;   STRING SI); 

BEGIN 
INTEGER SEPRCMJCENE,  SEflRCM_LlNE.  SEORCH.CHBRj 
INTEGER SEORCM^CNT,   TinE«,  TlflEi; 

I OTHER.EDIT.ROUTINES; 
BOOLEBN PROCEDURE SERRCHCINTECER S.SCENE,  S.LINE, S.CHflR; 

STRING UHPT); 
BEGIN 

INTEGER SCN,   LN.   CM».   CHI;     STRING SRCM.STR; 

/ SERRCH.PRiniTlVES; 
SCN . S.SCENE:   TIME! - SVSTEM_Tin£(l  - TinEB; 
SEBRCM.CNT;     TIHEl; 
TOR LN . S.LINE  STEP   I  UNTIL  GETLENCTH(SCN» 
DO BEGIN 

S£BRCH_CNT . SEflRCM.CNT ♦  1; 
SRCM_STR  . 6ET_TE)iT(SCN,  LN,   CMR*1,   999);   CMR . 1; 

* 
IF   (CHl.riNO_STRING(UMOT,   SRCM_STR))   THEN BEGIN 

SEBRCMJCN - SCN;   SEW»CH_L1NE  ► LN; 
SEORCM_CHPR  .  CHR»CH1»1;   RETURN(TRUE) 

END  COM»«"!   rtcurti.i  (•«reh;; 
*■ UHILE   (CHKflND.STRINCr/-,   SRCH_STR!)  00 

IT SEPRCH(FIN0.SCENEISRCM_STR1CH1.1 TO 999)), 1,»,UHPT) 

til 

ID 

RDRTB/OPTP 

USER.COPILOT(...); 
BEGIN 

TBRGi.TEXTPROGC...); 
BEGIN 

TPRGl.EOIT(...); 
BEGIN 

...;   SEPRCH.CNT  .   i2; 

...;   TIHEl  . 4.W;   ...; 
TPRG1.SEPRCH#:(S.SCENE . 3.   ., 

*■ BEGIN 
...;   CMR   .   i-    ... 

END: 
END; 

END; 
END: 

UHPT  .   "TMIS  ONE-); 

;:; 

CCinOND EKPBNOED COirENT 

wk*zr> MOVE .CURSOR ICRNT_REG,  *.  6,  8, 
<»P ; F IND.STRING ICRNT_R£G, "; •, 1) ; 
»FC FIN0lsTRING(CRNT_REG,"CM); 

• ; SET_P(CET_PROCE33(EP), 
Eon .STRUCT (CRNT_REG)   l; 

■I STEPPiCET.P»OCESS(tP),   ■*■); 
mt STEPP(GET_PROCESS(f.P),   ■*■); 

i); til   Hevt  in« «o>t-curtor   (•)  dour. 4   I mat, 
th«n  out   1o   th«   lint   "C"  »M«r   »   ";" 

121 1^0^« th« COnltnl cursor (►) ,  .denlilymq 
lh« IP (Ir.»lruct ion Point) to th« 

«flit-curso"- loc, thon •••cut* tuo 
ttntt. Th« «(nqnaant to tn* 
.«ri*6i* CMR n«( cn«nqtd its .«iu« 

fro» 17 in th« prawoui oij^r^» to 
I in i- i on*. 

Figure 4-4. Simple Editing and Execution Control (part I) 
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s- RPROG/EOIT (PROG) N 
INTEGER SE(«CH_SCEM£,  SEflRCH.LlNE, SEBRCH.CHfift; 
INTEGER SE«RCH_CNT,   TIflE»,  TII1E1; 

I OTHER_EDIT_ROUTIN£S; 
BOOLEBK PROCEDURE  SEflRCHUNTECER S_SCEN£,  S_LINE.  S.CHflRi 

STRING UMHT); 
BEGIN 

INTEGER SCN.  LN,  CHR.  CHlj    STRING SRCH_STRj 

I SE«RCM_PRIflITIVES; 
SCN ► S.SCENE;   TIHEl * SYSTEHJIHEO   - TlnEB; 
SEBRCH.STR;     TIflEij 
TOR LN v S.LINE  STEP 1 UNTIL  CETLENCTH(SCN) 
00 BEGIN 

SEBRCH.CNT ► SEflRCH_CNT ♦ ij 
SRCH_STR .  CET_TEXT(SCN,   LN,   CHR»1,   999);   CHR . I; 
IF   (CHKFINO.STRINCCUHflT,  SRCHJTR))   THEN BEGIN 

SEBRCH_SCN - SCN;  SEfiRCH_LlNE » LNj 
SEBRCH.CHflR ► CHR*CH1»1;  RETURN(TRUE) 

ENO  CoMnnt  rtcursiv«  t««rch;; 
IF   (CKl-FINO.STRlNGCr,  SRCH.STR))   THEN 

4 

». IF SERRCH(FIN0_SCENE(SRCH_STR[CHU1 TO 9991) .l.l.UHflT)     131 

ROfiTR/OfiTP 

USER.COPILOTC...); 
BEGIN 

TRRG1.TEXTPR0C(...)| 
BEGIN 

TBRGl.E01T(C0nnRN0 • 17, ... ); 
BEGIN 

...; SEBRCH.CNT . I2i 

...; TIHEl . 4.«5; ...; 
TflRGl.SEARCH«(S.SCENE .3, ... 

»• BEGIN 
...; CHR . •• ...; 

SRCH.STR . "IS IT THIS ONE'" 
ENO; 

END; 
ENO; 

ENO; 

(41 

UHBT "THIS ONE") 

[41 

„ 

. 

.. 

.. 

.. 

., 

connnNO EJIPPNDED 

■, SET_CURSOR(GET_REGION(IP), 
GET_LINE(IP).  CET_COLUnN(IP), 

IF (DIT_CHOR(CRNT_REC,"IF",i) 
«3«0 EDIT_CHflR(CRNT_REC,NULL,-3) 
»2»F0 FIUlIsTRING(CRNT_REG,"0".:) 
THEN E0r_CHOR(CRNT.REC."THEN",l) 
itS STEfP(GET_PROCESS(EP),"«") 
■tSRCH_STR;.cr> 

EVRLCSRCH.STR^.IP.EP) 
.4C0nnfiND;.cr> 

EvnLcronnBHOr.iP^Pi 

COnHENT 

(31  Nou brmq  tna to   t  cursor   to  th« n«u 
-1);      centot cursor   (IP)  position,  chtnqs  th« 

"UHILE"  to M "IF"   (ropltco  "UH" by  "IF", 
thon dolot*  "ERE"),  »nd  •*»•  "00"   to  "THEN". 
Than   "sttp   in'   to   th«   st*t«m»ni   at   IP  by 
«««cutinq   th«   (succ«s<i<ul)   t«st   *nd susp«ndin9 
«I   Ih«  subst«t«Mnt. 

141   Fin«tly,   «««cut«  d«t*-0ispl«y  op«r*tions 
to   mspoct   (And  r«t4in   in  VI«H)   SO«« 

addition«I   v.',ri«bl«t. 

Figure 4-5. Simple Editing and Execution Control (pirt 2) 
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4.C3 A glimpse of Non-preftnption 

The User-loop of COPILOT is continuously active. This means that, within second or two 

(a reasonable response interval) after accepting one command, it w.ll be ready to accept (and 

act on) another. We have arranged to implement those operations which require longer 

intervals as separate, lower-priority processes, in order to maintain this response. Chief 

among these other processes are the user's target (applications) processes. 

I 

Figures 4-6 through 4-8 portray a sequence which we hope will not appear too contrived. 

Program-editing statements (expanded from the simple »B command) first add a BREAK 

(breakpomting) statement temporarily Then (Figure 4-6) the »P (proceed) statement allows 

processing to continue from (IP, EP) m the Target process. The breakpoint has been planted 

to detect an unexpected condition, and the user knows that whether or not this condition 

develops, execution will take some time He therefore (Figure 4-7) issues commands to 

change some of his Regions, selecting a new Scene for view m the PROG Region and cutting 

off most visual contact with the TARGI process, which continues to operate, indicating its 

progress by occasional changes in the TIMEI and SEARCHXNT variables. In this 

instance the new Scene (SUBST) is a piece of code which he has just begun to compose. 

Because the process(es) implementing the User loop algorithm operate at a high priority, his 

editing commands (Figure 4-8) receive service as they come in. "stealing cycles" from his 

running target, or applications, process In short, he has been able to initiate an external 

operation, then to shift his locus of interest, while monitoring some aspects of the previous 

operation He has issued a stream of interspersed editing, debugging, and program control 

operations He has accomplished this, we contend, with no noticeable loss of continuity, from 

his standpoint We have an IPS which satisfies our multiple-process, minimal mode, rich- 

context criteria 
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RPROC/FJIT  (PROC) 

V 
\ 

[ 

BEGIN 
INTEGER SCN,   LN,   CHR,   CHI;     STRING SRCH.STR; 

t SEflRCH.PRiniTIVES) 
SCN . S.SCENEj   TIHEl . SVSTEt1_TinE()  - TIHE»! 
SEORCHJTR;     TlflEl; 
FOR LN'. S.LINE STEP  I UNTIL CETLENCTH(SCN) 
00 BEGIN 

SEflRCH.CNT - SEflRCH.CNT ♦ 1; 
SRDL'TR . CCTJCXTCCN,  LN,  CHR»!,  999))  CHR ► 8; 
IF   (CHl-FINO.STRINGWHRT,  SRCHJTR))   THEN BEGIN 

SEflRCH.SCN ► SCN;  SERRCH_LINE . LN; 
SERRCH.CHRR > CHR*CHU1;  RETURN (TRUE) 

ENO CoMwnl  rtcursiv« «t4rch;; 
IF   (CH1-FIND_STRINC("#",  SRCH_STR))  THEN 

IF SERRCH(FrND_SCENE(SRCH_STR(CHl4l TO 9991 >,1,1,UHRT) 
THEN RE TURK(TRUE) 

END CoMMnl  en«  I ma; 
IBRERMTARG1II   RETURN(FnLSE); (SI 

* 
ENO  CoMNnt   Starch, ; 

CRSE  COnnRND OF BEGIN 

t OTHER.EOITS; 
BEGIN 

TIHEB . SVSTEn.TinEO;    SERRCH.CNT ► 8; 
RETURN (SERRCH(EOIT_SCENE,  EOIT.LINE,  EDIT.CHBR,  SD) 

ENO  CowMnl   i»*'cn  cowMnd; 

t STILL.OTHER.EOITS; 
ENO Cowxnl  €«!•; 

ENO CoMMnt Edit;; 

  RSTPT/STRT   

USER RUfllTINC  U$»r   Input 
POST RUfllTINC Potttvtnt 
UCP STEPPED 
TflRGl RUNNING (51 

.1 

., 

. 

u 

Ü 
/ 

COnnflNO EXPANDED 

•4.er> MOVE_CURSOR(CRNT_REC,*,e,8,8); 
• : STRUCT_nOV£(CPNT_REC,":")i 
mi EOIT.CHflRtCRNY.REG." IBREflt-(TRRCllI",!)i 
■P BCTIVflTE(GET.PROCESS(EP)); 

connENT 

(SJNou "plant t  breakpoint* (tht ttniporar^ 
'BREAK(TflRGl)') «t « point which uill 
only b« rttchod if *r  «rror occurs, «nd 
lot Ih« procoti procood. 

Figure 4-6. Control of Multiple Procfsses (part 1) 

58 

MMM 



/^ 
RPROC/SUBST (PROC) N 

PROCEDURE SUBSTUNTEGER S.SCENE. S.LINE,  S.CHflR; 
STRING FRO»,  TO)   INTEGER HOUnRNY); 

nil« 
INTEGER TttlEl,  LN; 
FOR LN . S.LINE STEP 16) 

ROBTP/OPTP 

USER.COPILOn...)! 
BEGIN 

TflRGl.TEXTPROG(...>; 
BEGIN 

TPRGl.EOIT(COnnRNO .17,   ...   )| 
BEGIN 

...j  SEPRCHJNT . 116| 

...;  TlflEl  .  10.87;   ...j 
TflRGl.SERRCH#2(S.SCENE . 3,   .. 
BEGIN 

...j   CHR  >  0;   ...; 
SRCH.STR . "R RPNDOn SERRCH STRING" 

END; 

ENO| 

END; 

END; 

, UHRT • "THIS ONE"); 

  RDVNR/CRLSEQ (USER) — 

C*llin9 Stauencii tor Editing Pnaitiv«! 

161 

L - CETLENGTH(SCENE) 
S ► CET_TEXT(SCENE,LINE, 

STRRTCHR, ENOCHR) 

B ► FINO.STRINCCFOR', "IN") 

raturnt nunbtr of I mat in Scant 
raturnt « talactad suostrmq, not 

to axcaad ramaminq langth of I ma. 

TRUE \\  FOR m IN, FRLSE otaruita. 

COntlRNO 

•2KR 

«nCRLSEO'cr 

■-•:yR 

i.nSURST.cr> 

...STRIN. . 

...BEGIN.. 

EXPANDED COtWENT 

[61Hova tha adit cursor to tha RDYNR 

Raqion, tamportrily chtnqa its 

Scana to ont contaminq 4 
tunction-da»criplion dorunant, 

than go buck, twitch tha RPROG 

Ragion to • tast Setna (or « 

routma undar dava I opman t, ana 
bag in aditinq it.  RSTPT and RDVNR 

art still monitoring tha Activity 

of tha running orocatt (TRRG1). 

Figure 4-7. Control of Multiple Processes (part 2) 
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EDIT REGI0N(NEXT_RECION(CRNT.REC,2). 
-1,   -1,   -1); 

t1flP_SCENE(CPLSEQ1CRNT_REG, 1,1,1); 
EDIT RECI0N(NEXT_REGI0NiCRNT_RECN,-2), 

-1.   -1.  -Dl 
flBP.SCENE(CRNT.REGN.SUBST); 
EDIT_CHRR(CRNT_REC,"...ST...",8); 
EDIT_CHRR(CRNT.REC,"...BEGIN..-,«); 
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S0, 

RPROC/SUBST (PROC) 
X 
\ 

PROCEDURE SUBST (INTEGER 5.SCENE, SJ.1NE; 
STRING FROH, TO| INTEGER MOunflNY); 

BEGIN 
IKTEGER TinEl, LN| 
FOR LN -  S_UNE STEP 1 UNTIL GETJ.ENGTH(S_SCENE) 00 

IF FIN0_STRINC(FR0n>GET_TEXT(8_SCENE.SJ.INE>l)) THEN 
BEGIN 

1NSERT_TEXT( 
4 

[7] 

RDflTfl/DflTP 

USER.COPILOT(...)| 
BEGIN 

TflRCl.TEXTPROG(...)| 
BEGIN 

TMGl.EOITCCOnnflNO •  17,   ...   ), 
BEGIN 

...;   SEflRCHJNT •  US; 

...;  TIflEl • 13.23!   ...| 
TPRC1.S£BRCH/2(S_SCENE .3 UHftT ■ 'THIS ONE'); 

» BEGIN 
...| CHR . 6)   ...| 
SRCH.STR ■ 'This !• indaad • (trln;* 

ENOi 
END; 

ENOi 
ENO| 

RSTflT/STRT 

• USER RURI TING Uitr  Input 
POST flUniTINC Petttvtnl 
UCP STEPPED 

*•      TMG1 BROKEN 

J 

.  1 

.1 

connnNO 

'»ncER TI. 
f ■» LN  . . 
«£CIN.. 

EXPANOEJ 

£OIT_CHIW(CRNT_REG,• 
E0IT_CHI»«(CRNT.REGP' 
EOIT.CHQRtCRNT.REG,' 

contiENi 

. IN..',I); 171E.tn   though   th«  TRRG1  proctsi 

.FO..",l); h«f lutpandad «t   th* BREAK  tUUMnl, 

.BEGIN..",!) | contmut ad i ting  th* SUBST Scan« 
(«n •>««pi*  ot  non-prt«Mplion). 

Figure 4-8. Control of Multiple Processes (part 3) 
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Figur« 4-8 through 4-11 provide our last example, demonstrating non-pre#mption. In 

Figure 4-8 the ST AT Scene indicates suspension of the TARCl process due to a BREAK 

statement, and flashes the asterisk (at one-second intervals) to attract attention. Our user, 

however, has devoted a good deal of thought to the construction of the line of code which he 

was inserting when the BREAK occurred. Fortunately, he is under no obligation to do 

anything about the broken Target process. He finishes his line, adds another (Figure 4-10), 

then (Figure 4-11) calls up the environment of the broken TARGI process, and faces the 

bad news with a clear head. 
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/»"• 
RPROC/SUBST  (PROO N 

FOR LN » S_LIN£ STEP 1 UNTIL GETJ.ENGTH(S_SCENE) DO 
IF   (CHRl>FINO.STRINC(FR0n,C£T_TEXT(S_SCENE,S_LINE,l)))  THEN 
BECIN 

INSERT_TEXT(S_SCENEP   S_LINE,  CHR1,   TO); 
[8] 

"v.. 

. 

:i 

:i 

,i 

connpNO 

..INSERT T. 

EXPANDED 

EOIT^HWaRNTJEC,' 

COnnENT 

.IN..*,I)|  (SiR««iih a cenvtniint pi«c( to stop 
•ditlnq SUIST bttort handling th» 
brtakpomt condition. 

Figure 4-9. Non-Preemptive Operation (part 1) 
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IT 

ii 
D RPROG/EDIT  (PROC)  191 

BEGIN 
INTEGER SCN,   LN,  CHR,  CHlj STRING SRCH.STR; 

* SEBRCH.PRirmma) 
SCN * sJcENEj   TIMEl ► SYSTEfl.TIIlEO   - TinEO) 

SEflRCH.STR;     TIMEli 

FOR LN ► S.LINE  STEP  1 UNTIL GETLENGTH(SCN) 

DO BEGIN 
KMCHJCKT » SEflRCH.CNT ♦ 1; 

SRCH_3TR  ► CET_TEXT(3CN,  LN,  CHR+1,  999)j  CHR - 9; 

IF   (CHKFlKD.STRI'ir.dJHflT,  SRCH.STR))  THEN BEGIN 

SEflRCH.SCN . SC^i  SEflRCH_LINE - LNj 

SEfiRCH_CHBR •> ChR*CHUl;  RETURN(TRUE) 

END  Comment   recursiv«  »tarch;; 

IF   (CHKFIND.STRINGCr,   SRCHJTR))   THEN 

IF  SEARCH(FTND.SCENECSRCH.STRCCHUI TO 9991), 1,0,UHRT) 

THEN RETURN(TRUE) 

END  Commont   on     lint} 

IBREflMTflRGDI   »RETURN (FALSE); 
* 

END  Comm«nt   Sielrch;; 

CASE  COnflANO OF BEGIN 

t OTHERJDITS; 
BEGIN 

TIMED ► SYSTEn.TIMEO;    SEARCHJNT * 0; 

RETURN(SEARCH([DIT_SCENE,  EDITJJNE,  EDITJHAR,  SD) 

END Comment  seiirch command; 

# STILL.OTHERJDITS: 

END Comment  case: 

END Comment  Edi t;; 

RSTAT/STAT 

USER AIIAITING User   Input 

POST AIIAITING Postevent 

UCP STEPPED 

TARG1 BROKEN 

COtinANO EXPANDED COnnENT 
T0_CONTEXT(-l) j     19) Finally, return RPROG ano RDYNA Region» to 

the context ol the process (TARC1) which brote, 
and prepare to fix it.  See also the next figure. 

Figure 4-10. Non-Pre#niptive Operation (part 2) 

63 

■ i    i in        i^ 



s 
RDPTfl/OPTfl 

»I 

,  UHflT .  "THIS ONE"); 

USER.COPILOT!...); 
BEGIN 

TflRCl.TEXTPROCU..»; 
BEGIN 

TflRGl.EOIT<COnt1BNO .  17, 
BEGIN 

...;  SERRCH.CNT .  US) 

...j  TlflEl • 13.23!   ...! 
TARGl.SERRCH/r2(S_SCENE ■ 3, 

► BEGIN 
...I  CHR •  0;   ...| 
SRCH.STR •  'This  it  i  dMd « tlnnq 

END) 
Mi 

Mi 
END; 

  ROYNfi/DYNfl  

1 

II 
USER.COPILOT 

?l       31    41 
POST.POST UCP.UCP TflRGl.TEXTPROG 

I 
EDIT 

I 
SEPRCHIl 

I 
t SERRCH#2 

191 

J 
,y 

.1 

J 

.1 

.; 

I 

.1 

connflNO EXPANDED connENT 
Ri»«lnd«r of   ItMl  ttttl,  «Hir riturnmg 
«ttantion to th« luipandad proettt. 

Figure 4-11. Noii-Pre«inptive Operation (part S) 
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4.D.  ATTRIBUTE ANALYSIS OF COPILOT 

We will apply the same behavior match aralysis to COPILOT which we applied to other 

IPSs. We will indicate, for each attribute, those qualities of COPILOT which satisfy the 

requirements imposed by that attribute 

The User loop of COPILOT, in common with other systems, fits the .educed mode FSA 

model m its basic operation. In common with UPOA systems, the statemeus executed t" this 

loop have different interpretations when applied tr different program contexts. COPILOT 

can not be considered a DPDA system, however. We have replaced the nested user concept, 

which DPDA systems implement by creating instances of a User procedure in some operating 

environment, by a sort of "omniscient user" organization The user is given the illusion that 

he is "above the plane of his program, looking down" (or some illusion to that effect). He 

can, by pointing, cause any active environment to be influenced by his actions. Uüer 

"instances" no longer need follow any particular control discipline. (In reality, there is but 

one User instance, whose activities invoke appropriate activities in other processes.) 

Let us now perform the detailed attribute analysis: 

1) Multiple Activities. COPILOT allows the user complete control over the processes he 
creates. The system itself makes copious use of the multiple processing and event 
handling facilities of the language We have described some of these system processes. 
Others operate behind the scenes; they will be described in Chapter 8. 

2) Non-pre#mption. Ironically, we have achieved non-pre#mptive behavior by having one 
process, the User process, totally preempt the terminal. This process is, fortunately, 
designed as the mechanism for non-pre#mptive control of the other processes. The 
terminal is always available for user commands. 

3) Response time. The ust-r may issue any meaningful command, and have it begun, 
immediately after the system has accepted the previous command (limited only by the 
time delay of the User loop, which is determined by system load, but should remain 
short). This is the combined result of the process structure, the User process design, and 
mode minimization. 
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4) Minimal modes. There are no global modes in COPILOT; no special command must 
be issued to begin editing a function, or to begin inspecting program variables. There 
is a different command, or statement, in the single input language, for each interactive 
operation in the system. This might require more different commands than systems 
which provide modes, but the increase is not too great. The number of commands is 
held in check by the use of the same text-oriented and structure-oriented editing 
operations on each kind of IPS data. Thus, editing the program (e.g., RPROC) Region 
corresponds :o a "program edit mode", while editing a data (RDATA) or dynamic 
activation tree (RDYNA) region corresponds to some "debug mode" operations. Chapter 
7 presents, in just 39 commands and special statements, a reasonably complete set of IPS 
facilities, whose power may be enhanced by direct execution of normal language 
statements. 

5) Single language. Every action in COPILOT is expressible as a statement in the MISLE 
language A statement, if correct and .neaningful, will always mean the same thing, 
except for the environment-dependent bindings of names. 

6) Accessibility. By referring to supplementary data structures, COPILOT facilities can 
transcend normal scope limits, gaining access in a controlled manner to names and 
values of any data in the "job" 

. 

.; 

.; 

7) Context All program contexts: programs, data, and execution state, can be visually 
displayed, in a manner revealing their structure. 

8) Non-symbolic operations The common operations for editing and process control are 
very short, manipulative in nature. We could extend our expansion algorithms to 
accept non-symbolic input from devices such as a "mouse" or "graphics tablet", again 
creating MISLE statements for execution. 

:l 

The chapters which follow present the COPILOT design in more detail- first the user level 

descriptions, then some implementation considerations. In the final chapter, we will discuss 

some of its shortcomings, and some possible extensions. 
0 
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CHAPTER 5 

THE COPILOT SYSTEM: A USER-LEVEL DESCRIPTION 

In this chapter we wish to expand the introduction of Section 4.C, presenting the COPILOT 

experimental design in some detail. Our goal is not to write a user's manual, but to cover all 

the major aspects of the system, to give the reader a general understanding of its capabilities, 

and a feeling for its philosophy. 

. 

5.A   BASIC SYSTEM STRUCTURE TERMINOLOGY 

Our discussion of COPILOT begins with the structures we have developed for the display 

of information. These structures, while they need not sttongiy affect such things as the 

programming language design- the control and data structures it supports- do determine 

how the user views his programs, and what role he can play in their operations. 

We will show that the Seen.? types defined in COPILOT constitute an adequate external 

model for the Information Structure of most block-structured languages and that, when 

linked to the operant structures underlying them, these Scenes provide all necessary context 

for viewing and controlling program operation. 

We begin the discussion wuh a definition of the COPILOT display terminology. 
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A Rpgion is usually named, crfatfd, and used for a specific kind of Scene, if one wishes to 

use the same Screen area for multiple purposes, he assigns multiple Regions to that area In 

the current system, no two Regions whose areas overlap may have Scenes mapped into them 

(be visible) simultaneously Such a facility would require a priority scheme to resolve 

conflicts 

We will treat Regions and their relationship to Scenes in Section MH, after a detailed 

consideration of Scenes and what we put into them 

5 A3 Scenes 

We have used the term "Scene" loosely in the preceding paragraphs to describe the collections 

of lines displayed in a Region In our formal definition, such a collection of lines is a 

"Window" of some Scene if the Scene has fewer lines than its Region, enough empty lines 

will be inserted to fill the Window The archetypical example is the Scene used for storing 

and displaying program text Program Scenes resemble the user-defined "pages" which often 

segment program text files into logical groups A program Scene might be just one page from 

the file, although we in:end to suggest an orgacization of programs into Scenes which is more 

intuitively structured for interactive operation We have avoided use of the term "page" to 

avoifl confusion with the memon "pages" of some modern computing systems 

5 A4 Scene T\pes 

Every Scene has the same frrmat a set of text lines As we have suggested, though. Scenes 

are put to various uses Some Scenes correspond to structures (such as ompiled code» at other 

levels, or contain data which system prcxesses need to read The user may also define Scenes 

which require special treatment We associate with each Scene a Scene type, a code 

identifying its uses 

'Kdditional af'nbutes for a Scene include its name, a string optionally assigned to it when it 

is created, its length (the numbei of lines), and the .urrent editing position within this Scene 

The ec:i! cursor ("*" charactei I visibly indicates this pom: whenever the Scene is selected for 

terminal-controlled editing operations 

Other attributes could be used to place restrictions on rhe use of Scenes    These attributes 
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would be similar to the "Capabilities" of [32] and would specify for each process whether, 

for instance, that proces; was permitted to read, modify, or (for Program Scenes) execute the 

Scene, who its owner was (for shared Scenes), etc. 

5 B   CONTEXT SCENES AS EXTERNAL INFORMATION STRUCTURES 

Before we consider the Scene types which we have provided in COPILOT, we should say 

just what it is we want these Scenes to accomplish to supply the user with that contextual 

intotmation needed both to observe the instantaneous state of a computation in a coherent 

manner, and to predict and influence its future actions We will refer collectively to these 

Scene types as Context Scenes 

5.BI Information Structure Models 

In [Ml Wegner formalized the need for a way to describe program execution context with 

his Infoimation Structure Models He categorized programming languages by the data 

structures required to specify their Information Structures within a processor These 

structures include algorithms, data, and their control mechanisms A set of Information 

Structures. I. time-ordered "snapshots" of program and data configurations during a 

computation, an initial configuration IQ from I, and a set of transformations (interpretation 

rules». F. taking configurations I to their successors- constitutes an Information Structure 

Model of the computation, in a giv?n programming language and sys'em In the Context 

Fcenes, we *ill be concerned with the external representation of elements from I. For most 

programming languages, Wegner shows that one can further factor the Information 

Structures of I into the following components 

1) The Program Component a representation of the algorithm 
2) The Data Component objects allocated and manipulated by the algorithm 
i)      The   Contiol   Component    indicators   of   currently   active   program   steps   and   data 

environments within each active process 

5 B2 The Contour Model 

Johnston.  [27],  has developed  an   Information Structure  Model, the  Contour  Model, for 
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ü block-structured languages This model has been shown adequate for representing the 

information structures of AlgolSO, Algol68 [47], and Oregano, [i], which was designed 

around it The Contour Model appears to extend to the complen naming structures of PL/I 

and Simula, as well, although it does not support the dynam.cally inherited naming scopes of 

Lisp, LCC, and their ilk 

Figure b-l is an example of a "snapshot" from an Algol60 program, expressed in the 

Contour Model The Program Component is called the algorithm, the Data Compon« nt the 

record of activation. In the latter the nested Contours define the lexically nested access 

environment, while the dynamic (control, eg caller and callee) nesting is shown by 

connecting arrows The Control Component consists of one or more processors, each 

defining the locus of control of an independent process, each represented in the model by the 

IP (instruction point), and EP (environment point) arrows emanating from the V graphic 

which depicts the processoi 

:: 
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1 bl BEGIN 
REAL   a.b.x; 

2 PROCEDURE PU.y); 
REAL  Iffi 

3 bp  BEGIN 
REAL c; 

4 P(...,...) 
5-6  END; 
7      b2: BEGIN 
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9 END 
10 END; 
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Fijure 5-1. Tlie Conio-ir Model Reprei«ii:«iioii for an Algoriilim 
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5.B3 The COPILOT Context Scenes 

By   viewing  a  snapshot,  I,,  in   a Contour  Model representation, and   knowing  how the 

interpietei, F, operates, one can predict the content   of snapshot L^i, to whatever level of 

detail one chooses This is precisely the kind of condition we want to create with our 

Context Scenes Although we have not used the Contour Model notation directly, we will 

show the (potential) functional equivalence between the Contour Model and our Context 

Scenes This will demonstrate the adequacy of the Context Scenes as an external 

Information Structure representation, for M1SLE and a variety of other languages. To 

handle Lisp-like structures would require additional development 

5.84 The Snapshoi Rcqu lonicnt 

We are limited by current hardware in the amount of concurrence we can achieve Because 

much of what we display (the name and value of a variable, for instance) must be converted 

from the internal forms required for efficient operation, and because of the expense of this 

comeision, it is impossible to record each change visibly as soon as it occurs Text Scenes 

are made to agree with changes in the ultimate underlying structures, not instantaneously, but 

at frequent and adequate intervals, in a manner ievealed in Section 6C 

In order to preserve the "snapshot" quality of the Contour Model in our system, we will 

impose the following requirement all visible context Scenes must be updated simultaneously, 

each time the display is changed Therefore, at any instant, all visible system information is 

a correct tepresentation of some subset of the system state at a single previous instant. Thus, 

the user sees is a single coheient "snapshot" of his system, not an album of individual 

pictures whose time relationship is unclear 

5 B!> COPILOT Context Scene Types 

We  can  now  present  desci iptions  of  the Context Scene  types.    In  each   we  will  follow 

approximately the same foimat 

a) Which component(s) of the Information Structure it exhibits 

b) Details of the information content of this type (syntax, semantics) 

c) How the information is oiganned into Scenes 
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There are only four different Scene types predefined in COPILOT; program, data, dynamic 

structure, and status Scenes   We will deal with «ch in turn. 

5.C1 The MISLE Language 

M1SLE is an e«ily-implemented subset of the language SAIL [52]. SAIL is derived from 

AlgolSO [46], with some syntactic modifications to suit the designers. Extensions were 

originally made to this base to include a variable length character string facility, and to 

include a variant of the associative processing language LEAP [18] More recently, in 

response to an increased need for sophuticated control and data structures in Artificial 

Intelligence research, a major revision was developed [19]. The addition mo;t relevant to 

our needs is a comprehensive set of facilities providing multiple processes in the style of 

Algol   68   [61] 

The current COPILOT implementation is written predominantly using SAIL, our preferred 

language would be a SAIL superset. However, we have yielded in this dissertation to the 

need for a language which is simple to implement, and to understand Therefore. MISLE is 

a limited SAIL subset, adding to the basic Algol like constructs just enough to support the 

IPS primitives which the user will need process control primitives, text strings, etc. 
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bC   PROGRAM SCENES - THE PROGRAM COMPONENT 

We have designed a programming langjag!. MISLE, in which the user both describes his 

algorithms and controls their operation, by manipulating their representations as program 

Scenes Although these operators require substantial underlying structure, none is visible to 

the user he see only the text of his programs, stored in Scenes. We ha' e chosen this 

standard textual representation over other alternatives (eg, Johnston's representation of 

programs as flowcharts nested in Contour Templates) for a variety of reasons, among which 

are. 

1) The notation is more compact. 
2) The control structure is more obvious (with a slight loss in the clarity of the data 

structure) 
3) Editing operations ate easier. 
4) The text format is moie easily stored, transmitted and printed. 
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21 <while> ::-  WHILE <Boolean.expr> DO <$tatement> 

22 <case> :-  CASE 

<arith.expression> OF <compound_$tatement> 

23 <pcall> ::-  <id> ( { <expr .list> } ) 

24 <proces$ control statem?nt> : - ACTIVATE ( <procfs$Jd> ) | 

TERMINATE ( <process_id> ) I 

SUSPEND ( <process_id> ) I 

SET PRIORITY ( <proces$jd> . <expres$ion> ) 

25 <pioccss id> ::- <arith expression> 

26 <expr list> ::•  <expiession> { , <expre$$ion> };- 

27 <Boolean expr • ::■  <disjunct> { v <disjunct> }» 

28 <disjunct> ::■  <relation> { A vrelation> ]<> 

29 <relation> ::-  <a-!th cxpression> 

j <relop> <arith_expression> }» 

30 <expression> ;-   <arith expression> 

{ & <arith_expre$sion> }' 

31 <arith expre$sion> ::-  { <pni> } <term> { <pm> <term> }•> 

32 <pm> :- ♦   |  - 

33 <term> :-   <primary> { <td> <primary> }« 

34 <td> :- *|/| MOD 

35 <primary> ;:-  <id> { [ <arith expres$ion> 

TO <arith expre$sion> ] } I 

«.j/.alb  I <constant>  | ( <expre$sion> ) | 

<process control primary> 

<algol-like array element specifications> 

36 <process_control.primary> ::■ 
SPROU i (<pcnll>,<father>,<stacksiie>.<priority>) 

EV.TYPE 0 I CAUSE ( <evtype> , <value> ) | 

EV.WAIT ( <evtype> ) | EV.GET (<evtype>) | 

AR EV WAIT ( <evtypearray> ) | AR EV_CET 

37 <evtype> ::■ <arith expre5sion> 

38 <fathe:> ::• <process id> 
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39 <stacksue> :- <arith_ex|jression> 

40 <priority> ::- <arith_exptession> 

41 <constanr>   - <$tiing constant> | <integer con$tant> 

42 <commeiit > :- COMMENT <algol-like comment, ending in ";" > 

5.C3 Semantics of Extensions 

MISLE is for the most part a slightly modified subset of Algol60 with the SAIL String data 

type added Its only data types are scalars and arrays of integer and string values, denoted 

by identifiers, constants, and expressions Only explicit conversions (string to integer, integer 

to string) are provided. The operators ♦, -, o, /, and MOD are available for arithmetic 

operations, normal relationals are available f*r Booleans. Strings may be concatenated using 

the operator & S[n FOR m] yields the m-character substring of S, beginning with the nth 

character Parameters are passed to procedures by value only. Control facilities include (in 

addition to procedu. ;s), GO TO, IF, FOR, WHILE, and CASE (alternative selection) 

statements A syntactic modification places both the naming and type descriptions of 

procedure parameters within the (parenthesized) parameter list, as in Algol W [81 

5.C4 Processes 

The process-manipulation primitives of the unenhanced language allow creation, deletion, 

suspension and activation of processes (see [4] as a reference to the kind of "cactus stack" 

process structu.e we employ) We mean by "unenhanced" that these do not rely on the 

facilities of the IPS for their operation 

Processes are assigned execution priorities when they are created. Whenever a n nnmg 

process suspends, or specifically requests it, the system scheduler selects a new process to run, 

choosing the highest-priority process which is READY to run (see Section 5 F) 

Events are interrupt and process-communication mechanisms A process may cause an event 

of a chosen event type, and may specify a value to be associated with the event When the 

scheduler next runs (the running process suspends), it will ready any processes which are 

waiting for an event of this type, returning the associated value as the result of the function 

which does the waiting 
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For each occurrence of an external interrupt (I/O, timer, etc) basic system routines simulate a 

very high priority process which causes an appropriate event and forces rescheduling as soon 

as possible. Processes handle interrupts by waiting for, or testing (polling) for, events of the 

corresponding type. This approach to interrupts, as opposed to more standard interrupt 

mechanisms like those in [47] ("unexpected" procedure calls), is supported by Wirth [64]. 

The result is a consistent, process-oriented method for handling all asynchronous activity. 

Table 5-2 provides the meanings of the basic process-control primitives. In Section 7.C7 

we will describe additional process control functions, intended for interactive use. 

Table 5-2. COPILOT Process Control Primitives 

Sprout(...) 

Activate(pid) 

Suspend(pid) 

Terminate(pid) 

Set priority(..) 

Cause(..) 

Ev_wait(..) 

Ev.getC) 

Ev typeO 

Creates a new, suspended process, with given »tack size and priority. 

An instance of the specified procedure is readied within the new process. 
Sprout returns a unique integer process identifier, or pid. 

sets the state of the process pid to READY. It wi'I be set RUNNING as 

soon as possible, based on its priority and the a' ailability of resources. 

Sets the state of the process to SUSPENDED. It will not run again 
until some other process Activates it. 

Destroys the process pid, and any subprocesses. 

Changes the execution priority of a process. 

creates an event of given type and value, READIES any processes 
awaiting events of that type, and forces reschedu mg. 

yields the value of an event of given type. It causes the process calling 

it to wait (SUSPEND), if necessary, until such an event is available. 
The event is then forgotten by the system. 

never waits. It yields 0 if no such event has been caused (and still 
exists). Otherwise, it is the same as Ev_wait. 

creates a new event type 

. . 

78 

-    - 



"■■"■,  '   "■* ""   '  ........  ^       ,    ■ Li 

:. 

D 
.! 

Ar ev wait(..) 

Ar ev get(...) 

waits for one of a set of event types, specified in an array. The result is 
the type of event which was actually caused. Ar.ev_wait does not 
delete the event; hence, an Ev.get may subsequently be jsed to fetch the 
actual event. 

never waits. It yields 0 if no such event exists. Otherwise, it is the same 
as Ar ev wait 

5 C5 Special Features 

We have added the following additional constructs to the language >n order to make some of 

the interactive facilities more convenient The additions include variable-display (debugging) 

statements, breakpointmg statements, and Scene linking constructs.  The syntax follows: 

1 <statement>  ::- <Scene link> ; <statement> 

2 <declaration> ::- <Scene llnk> ; <declaration> 

3 <Scene link> ::-  • <Scene id> 

4 <Scene id> ::■ <id> 

: 

5 <statement> ;:■ <show> 

6 <show>   ::■ <expression> 

I <5tatement> ::- <tjmporary statement> <statement> | 

<statement> <temporary statement> | 

<affect> <class> 

8 «temporary statement> ;:■ '{   j<class> :} {<switch> !} 

<statement> (, <statemeiit>}.:.'} 

9 <affect>     ::-TURN ON | TURN OFF | DELETE 

10 <class>   ;:- <ld> 

II <switch> ::- ON | OFF 

12   <statement> :• BREAK ( <process id> ) | 

ARR BREAK ( «process id array> ) 

• 
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Each of these additions depends heavily oi -spectj of the IPS which remain to be described. 

We will delay explanation of their semantics until the descriptions are complete. 

For an example of a MISLE program, refer to the PROG Scene of Figure 4-1. or one of 

those which follow it. 

5.C6 Program Scene Organization 

Traditional program source text organization is straightforward; a deck of cards, a magnetic 

tape, or a disc file containing the lines of the program. In the latter case, perhaps the file is 

linearly segmented into logical pages, mostly for display purposes. 

One notable exception is the file system for NLS [15], developed over the !aic decade at 

SRI's Augmentation Research Center. Very briefly, the purpose of this display-based system 

is to provide a complete interactive environment for the user, to dispense entirely with paper 

and pencil, yielding a corresponding increase (augmentation) in intellectual power. The NLS 

work has proved a major influence in this research. We hope to retain something of this 

power in COPILOT, while extending its domain to direct interaction with user algorithms. 

Files (not only program files) are not organized in simple linear fashion in NLS. Instead, 

they are hierarchical, resembling outlines; the NLS user can choose to view only the levH of 

detail which suits him: just the major topics, the major and first subtopics, or the entire 

structure He can also place hidden or visible links at arbitrary points in his files, providing 

a path to related material in the same or other files. NLS makes it easy to follow these links, 

to save previous views, and generally to navigate fruitfully about a web of cross-references. 

We cannot hope to do the NLS system justice in so short an introduction, nor have w^« space 

to describe other text-manipulation systems which support structured file organization. We 

can  suggest  in  addition the references [60], [24], and  [42]. 

MISLE programs, being block-structured, are inherently hierarchical We envision an 

implementation of COPILOT which would allow the user NLS-like control of the degree of 

detail (depth of nesting) of the displayed program. For instance, one could view only the top 

level statements of a block, with substatements merely indicated Hansen used something like 

this in  his thesis [24].   The BBN-Lisp editor, [53], because of the need to be concise. 
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uses a similar structure-compression technique in its teletype-oriented system. Our system 

contains many hierarchical structures, and techniques like these would enhance any of them. 

At present, however, our use of hierarchical design is explicit. Instead of fragmenting a 

program into consecutive linear Scenes, the user can include Scene link constructs to achieve 

a hierarchical segmentation Figure 5-2 gives a simple example. The system views the 

program as if it were a procedure, expressed in one Scene, containing the data of Figure 

5-2.c; it treats a Scene link as a sort of "macro" call The user views it as a procedure 

containing a suppressed subptocedure (Figures 5-2.a and 5-2.b). The system prcvides 

complete facilities for "following the links", both forward and backward, when the user 

wishes more or less detail. When a Scene link occurs as the last line of a Scene, simulating 

linear connections, special treatment avoids unnecessary nesting. 

Our personal experience (supported by Mills in [42]) is that it is uieful to »egment a 

program so that each Scene is fairly small, each representing a logical section of the program 

and of the control structure of the algorithm. The system will nevertheless support Scenes of 

arbitrary size. 

'i 
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Scene «Stl; 
PROCEDURE TKINTEGER DUM); 
BEGIN 

•SRNP ; 
INTEGER J,K; STRINGS; 
FOR >1 STEP I UNTIL 100 DO BEGIN 

K^>3; K; 
WHILE K<>10 DO OUTPUT(RNP(K)) 

END 
END 

a) Containing Scene 

Scene «Srnp; 
STRING PROCEDURE RNP(INTEGER I); 

IF 1-0 THEN RETURNf") ELSE 
RETURN(RNP(I/10)&PUTCH(I MOD i0*48)); 

b) Contained Scene 

PROCEDURE TKINTEGER DUM); 
BEGIN 

STRING PROCEDURE RNP(INTEGER I); 
IF 1-0 THEN RETURNf") ELSE 

RETURN(RNP(I/10)&PUTCH(I MOD 10*48)); 
INTEGER J.K; 
FOR y\ STEP 1 UNTIL 100 DO BEGIN 

K«-J*3; K; 
WHILE K<J*10 DO OUTPUT(RNP(K)) 

END 
END 

c) Apparent Program 

Figure 5-2. PROG Scene Linkage 
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5.C7 The Instruction Point Portion of the Control Component 

As we have indicated, we have distributed our representation of the Control Component 

among the Context Scenes In Program Scenes we indicate the IP (for a selected process) by 

a special contex' cursor, represented by the V character. This context cursor precedes the 

text for a statement in the selected process. Which of the active IPs is selected for display 

depends on an indicator in the DYNA Scene (see Section 5.EI). Any terminal commands 

which require implicit program location data obtain it from this selected IP. 

The context cursor is the visible representation of the active statement within the selected 

process. No function used to retrieve program Scene data will ever yield a string containing 

the context cursor. See Chapter 7 for functions which yield its location. 

5.D.   DATA SCENES - THE STATIC DATA COffPONENT 

Because algorithmic languages like MISLE were designed before we designed COPILOT, we 

had little trouble deciding a representation for the Program Component in the program 

Scenes. This is not true of tlie Data Component, where few attempts have been made to 

create formal external representations for the data environments (for any language). 

Again, a logical candidate might be the Contour Model -epresentation; again we have 

decided against using it directly In addition to the reasons ^e gave in Section 5.C, we feel 

that use of Contours to display the Recoro of Execution would create Scenes of confusing 

complexity. We have instead developed a more linguistic method which we can prove 

equivalent in facilities to the Contour Model, thus adequate for Data Component 

representation 

Our solution requires two new constructs: 

(t)  Some object  to this term because the "language" is not  algorithmic (no verbs).    It   is  a 
language formally, however. Read "specification" for "language" throughout, if you wish. 
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I)     A data specification notation, or Data Language '+). intimately related to the MISLE 
language, for defining data  values  in  their static (lexical) contexts (the  static  Data 

«L Component.) 

2)     A tree notation for exhibiting the dynamic (control) relationships of the  Record of 
Execution. 
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We begin with the Data Language. 

5.DI Data Language Syntax 

: <data layout>    ::- <data block> 

2 <data block> 

3 <data tail> 

i <data speo 

5 <pcall speo 

6 <equalion> 

7 <[.ci\\ de$cr> 

8 <mstance> 

- BEGIN -data tail> 

<data speo { ; <data ipeo }* END 

• <equation> | <data block> | <pcall speo 

<pcall desci > ; <daia block> 

- <id> - <constant>  I ... 

• <instance> ( { «equation list> } ) 

i { <proce$s name> . } 

procedure id> {• <nestlng level> } 

9   «equation list> :;- <equation>   { , <equation> }* 

5.D2 Semantics. Pragmatics 

The Data Language is a parasitic language The syntax hints at this in its resemblance to 

MISLE: the procedure and block structure productions are nearly identical; the equations of 

the Data Language correspond closely to MISLE declarations. We require that the 

dependence be even more pronounced, however. A <data layout> is meaningless without 

reference to a section of the MISLE program to which it is linked (we coi.sider this linkage 

in more detail below). One <r)call speo or <data block> may exist at any instant for each 

instance of a procedure or block activation. 

There are two kinds of information in a <data layout>. The first, provided by equations, 

comprises the names and values of selected variables (and expressions) at some instant. The 

constant m an equation must agree in data type with the type of the linked variable whose 

name appears in the equation, and whose value It represents. We will say that an identifier 

is marked if it has been selected by the operations of Section 7.DI for display in data 

Scenes. 

The second is structural, provided by the block and procedure structure (whose interpretation 

is transparent), and by ellipses (...). The ellipsis is an optional device which informs the 

viewer that there are variables in the Contour whose values do not appear in ehe Scene. 
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The position of the ellipsis (or ellipses) in a <data block> or <equation Iist> corresponds to 

the position of the omitted names in the declaration list of the linked algorithm. Figure 4-2 

contains a Data Layout for one of the states enrcu..:-red by the program in the same figure 

during its execution. 

5.D3 Data Scene Organization 

The second COPILOT Context Scene type is the data Scene. Each data Scene contains one 

data layout which is linked (t) to a procedure in some program Scene. In COPILOT, a 

sn.gle data Scene. DS, can contain text level representations for the data from at most one 

instance of some procedure, p, and from those forming its lexical ancestors. This means any 

older recursive instances of this same procedure, any instances of other procedures in the 

dynamic ancestry of p (and in other process branches) whose variables are not accessible to p. 

can have no representation In DS. It is possible, however, to form other data Scenes at the 

same time which do represent these hidden environments. 

The user, or more commonly the system, can create a legal data Scene as follows: 

1) Choose a procedure. P-PQ. from some Scene, and some instance of that procedure. 

p-PO   Begin with an empty data Scene. 

2) Record in a <pcall speo the values of marked local variables and actual parameter 

values (with their formal names) from p. following the pattern established by P. 

3) Obtain the immediate lexical parent, P". of P. and the corresponding instance, p'. from 

the static environment of p. Quit if there is none. 

4 Embed the lines of the <pcall spec> created in step 2 in a <pcall speo formed by 

repeating steps 2 through 4, substituting P' for P, p' for p. An embedded <pcall speo is 
inserted just after the other declarations in the <data block> which corresponds to its 

point of declaration. 

The linkage of po to PQ defines completely the linkage of the data Scene to the program 

Scene. 

We should emphasize that we have made many arbitrary decisions in this design. We 

it) This is the anUe«d«n» link of Johnston's model; its explicit existence is usually omitted in his 
examples, but would have to be present in any implementation. 
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considered several other algorithms for generating data Scenes. Some of these allowed 

multiple instances of the same procedure, thereby includino; much more dynamic context 

directly. Perhaps one of these methods (or one which dd not occur to us) would be a 

superior one. Surely the designer of a COPILOT-like IPS for a different type of language 

should reconsider the issue. Our final choice is based mainly on a desire for clarity. The 

dynamic Scenes of the next section help cure many of the inadequacies of the data Scenes. 

Section 5.HI will depu.: data Scenes in action. There we shall show how these Scenes are 

created and used, emphasizing tne most common situations. 

5.D4 The Data Language as an Input Facility 

Using  Contour   Model terminology, the  Program Component  of a  Snapshot,  Ij,  of  a 

computation (*)is externally represented in COPILOT by program Scenes. In some sense, 

these Scenes also form a complete external representation of the initial state, IQ, since the 

initial Record of Execution is empty; they cannot specify any subsequent Snapshot, L, jcO. 

Thus, although the language can specify a computation via an algorithm, it cannot directly 

express intermediate states of that computation. R. Floyd has pointed out that it would be 

useful to have linguistic facilities for constructing these intermediate states (f). This would 

make it possible to: 

1) Directly create a test environment for testing a routine in an incomplete program which 
does not yet include code for supplying that environment. 

2) Directly modify an environment, perhaps to agree with a modified algorithm, perhaps 
preparatory to altering the instruction point (IP) of a process operating in that 
environment (in complicated cases this might be preferable to what the system could do 
automatically). 

3) Save and restore intermediate computation fötM in human-readable form. (For small 
programs, this "core dump" technique would allow one to save computations over 
console sessions.   In Section 8.B1 we will examine more efficient methods.) 

4) View Snapshots of a computation in a reasonable form. 

J 

] 
] 
J 

Q 

:! 

i 
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! 

.i 

(*) The collection of snapshots defining the total operation of one program "run" 

(f) Personal communication, October 1972. 
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We have not seen this kind of facility in an IPS. Comment (4) above should reveal our 

approach to providing it. We already possess a linguistic facility, the Data Language, for 

displaying intermediate computati' 1 states. By selecting a data Scene for editing, then using 

standard text-editing operation.; to modify it, the user can even indicate changes he would 

like to nake. To turn this into a full data-specification facility, it is only necessary to 

convince the system to convert these changes into corresponding changes in the actual 

underlying data structures. We have done this in the COPILOT design. Similar user 

changes will be shown useful in dynamic Scenes, as well (see Section 9.C1). This achieves a 

very pleasing symmetry within the Context Scenes, all constructs are useful for two-way 

communications between the user and the system. 

The editing operations required to accomplish text changes are presented in Chapter 7, 

including special convenience commands particular to data Scenes. 

5.D5 The Environment Point Portion of the Control Component 

We use here a development paralleling that for program Scenes. There is an Environment 

Point (EP) in the Control Component for each active Process, defining its access 

environmei t. Information in the dynamic Scenes will indicate all the active Environment 

Points. 

Again, the user (or one of his programs) may select a "distinguished" EP, which will be 

displayed as a context cursor (V) if the environment it defines appears in a visible data 

Scene. All terminal commands which require implicit environmental specification will obtain 

it from this cursor. 

5.E.   DYNAMIC SCENES - THE DYNAMIC DATA COMPONENT 

Data Scenes can show any or e.ery element of the Data Component, and the static (lexical) 

relationships between activations of <blocks> and <procedures>. They do not exhibit the 

dynamic connections (e.g., for procedure instance p, which procedure instance called it. or 

which created ('prouted) it; to which instance it will return). The purpose of the dynamic 

Scene is to provide this information. 
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We are tempted to suggest mother "language" here, with its own related syntax; we have 

decided instead to develop a more graphical representation for the dynamic "cactus-stack" 

structure of MISLE programs. This dynamic structure tree does share constructs in common 

with Data Language elements, however, and this linkage is important to our powerful 

context-roaming operations (Section 5.HI). 

There is but one dynamic Scene in a COPILOT environment, containing the single dynamic 

structure tree. Figure 4-2 is an example of the dynamic Scene. Its structure is quite simple: 

Each node (terminal or non-terminal) of the tree is an <in$tance>, as defined in the Data 

Language grammar in Section 5.DI. The root node ("USER.COPILOT»!") provides the 

base environment of the entire computation, or "job", including IPS facilities. Instances of 

active procedures in a process appear (in order of call) below each other in the same column. 

The root nodes of subordinate processes are placed in adjacent columns as shown, then 

connected by horizontal line segments to the processes which own them (i). The terminal 

nodes of the dynamic tree define the set of active Environment Points. 

5.E1 The Context Point 

At any one time, there can be but one EP visible (as a context cursor) in a data Scene, and 

buf one IP context cursor in a program Scene. In fact, given a computation in progress, and 

a particular EP, the corresponding IP is completely determined. Thus to select an (IP, EP) 

pair for display as context cursors, one need specify only the EP. 

We accomplish this manual selection of e ecution environment using an additiona indicator, 

which we will call the Context Point (CP). The CP is represented by a context cursor which 

selects an instance in the dynamic Scene. We have functions for moving the Context Point 

within the dynamic tree, and for generating data and program Scenes, with their context 

cursors, to exhibit the environments which the CP selects. We will describe these functions 

in Chapter 7. 

5.E2 Adequacy of Scenes as External Information Structures 

In Section 5.B3 we announced our intention to show a functional equivalence between the 

.! 

.1 

Q 

.: 

.i 

i 

a 

i 

j 

it) For sitrplicity, MISLE follows the retention rules implicit in Algol60, and explicit in Algol68: A 
process must be exterminated if its owner ceases to exist. 
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Context Scenes and Johnston's Contour Model. This is important, because it expands the 

power of our formulation to all the language types amenable to the Contour analysis. 

Now that each of our Scene types has been developed, the demonstration of this equivalence 

is quite simple: one need only select all variables for display, then create enough data Scenes 

to contain each instance of each active procedure and block at least once. Then for each 

relationship oi value revealed in a Contour Snapshot one can identify constructs from one or 

more Context Scenes which reveal the same relationship or value (a formal proof would 

simply enumerate these correspondences). 

5.F.  ST AT SCENE - PROCESS STATUS 

We have consistently omitted one important quantity from our Control Component 

descriptions; the execution state of each process. A user viewing a snapshot composed only of 

program, data, and dynamic Scenes could not predict from it the appearance of the next, 

since he does not know which processes are running, which suspended. 

We have therefore added one last Context Scene type, the status Scene. Figure 4-5 contains 

an example of one. It indicates for each process the execution status of that process: 

RUNNING. READY, or SUSPENDED. In a single processor system there can be but one 

RUNNING process; those lacking only the processor to run them are instead termed 

READY.  For most purposes the two states can be considered equivalent. 

We have further distinguished suspended processes in the status Scene by including in their 

status the reason for their suspension. (A final state, terminal, is aften included in the set of 

process states (see for instance [14] or [4]). In MISLE programs, for Simplicity, all 

structures connected with a process, disappear on process termination. The entry therefore 

just disappears from the ST AT Scene). 

Table 5-3 is a list of the current ST AT Scene state descriptors. 
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Table 5-3. Copilot Process Execution States 

FLAG STATE RF.ASON 

► RUNNING     The processor is executing this process, either because  it   has  the 
highest priority of any ready process, or because one of then,, after all, 
has to run. 

READY This process will run when the processor can be assigned to it. 

VIRGIN This suspended process has been created, but has npv<c. been READY 
or RUNNING. 

SUSPENDED This process was unconditionally suspended, either by its own volition 
or by some other process with the right to suspend it. Only another 
process can reactivate it. 

AWAITING x 

90 
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STEPPED This process has unconditionally suspended itself due to completion of 
a "single step" command to execute but one complete statemen. (see 
Section 7.C7).  The state is otherwise identical to SUSPENDED. •* 

The string x is a description of some condition whose occurrence will 
ready the process.  The flag ("!") is present only if that condition is to 
be satisfied by user action (or a procedure running for the user).   The -' 
flag blinks on and off until the user stops it. 

.1 BROKEN This state is again equivalent to SUSPENDED, except that suspension 
occurred due to a Break Statement. The flag (V) flashes until the user 
stops it (or causes the process to continue execution), in order to draw 
his attention to the breakpoint's occurrence. -1 
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5.G.  USER SCENES 

The Scene is the basic unit of classifiable allocation for the storage of data to be displayed by 

COPILOT. Only Scenes can be mapped into Regions for view. So if the user wishes to 

display and edit his own information, he will need Scene types in addition to those we have 

provided.  Consequently we might provide primitives to do the following: 

1) Create a new Scene type, assigning a name to a system-provided type identification. 
2) Specify for a new Scene type a process which will activate (trigger) whenever selected 

B events occur (Scene made visible, user changed line, etc.). 
3)     Create and name new Scenes of any type, and explicitly insert or delete information 

from them (unless they are protected from modification). 
4)     Delete Scenes. 

This is an undeveloped area of COPILOT. The definition of user Scenes would follow the 

same sorts of derivations we have used for the context Scenes. The triggered process (above) 

could maintain user-defined structures corresponding to text Scenes, just as COPILOT 

routines do for context Scenes- we will describe these methods in Chapter 8. Graphic (non- 

textual) Scenes should not prove difficult. 

5.H.  REGIONS 

Regions are named areas with fixed Screen locations.  A Region contains the following fixed 

(*) attributes: 

1) Its name, a unique global identifier. 
2) Its location (x in columns, y in lines, Screen •) and extent (x in columns, y in lines) — 

thus its Window sue. 

When the user or the system Maps a Scene into a Region, the Region acquires the following 

dynamic attributes: 

1) The mapped  Scene's Name, and therefore indirectly the Scene data, type, length, 
capabilities, structures, edit and context cursors. 

2) The index of the first visible line in the Region. 
4)     Other bookkeeping information. 

(*) Assigned by user or system at Region creation and allocation time — 'an be changed by re- 
allocating. 

91 

 -   -  —            imniiimnii 



''••■""'■" mmmm*mm^*mm mmmmmmmmmmmmmi^^^i^mf^^^^mmmm 

92 

D 
.1 

This is all that is required to generate the display of an active Region. 

The initial system configuration contains four Regions. 

RSTAT. with the ST AT Scene (also named ST AT) mapped into it, showing that only 
system processes exist, and none are running. 

RDYNA, with the DYNA Scene (named DYNA) mapped, showing that the only active 
procedures belong to system processes. 

RPROG,        with no Scene mapped. 
RDATA, with no Scene mapped. 

the user then  proceeds to complicate this picture by fetching and  interacting with his 

programs. 

5.HI Regions for Data Scenes - Special Problems and Provisions 

Data Regions require special treatment, because more than one is required for all but the 

simplest tasks. In a fairly complex situation, for instance, there might be one or more data 

Regions monitoring the progress of running processes, which would cause occasional screen 

updates by executing data display statements. Another data Region, containing the context 

cursor, would display the data Scene for the possibly suspended process currently under the 

user's direct control. 

I 

. I 

We have discovered that these two uses- monitoring running processes, and manually 

investigating suspended ones- requ^e data Regions with somewhat different behavior. We 

have therefore subdivided daia Regions, providing fixed context and variable context 

Regions. 

To monitor running processes, we need to guarantee that successive values of a variable (and 

only values of that variable) will be displayed in a single location of a screen. The 

alternative would be an impossibly "noisy", confusing situation. We therefore provide fixed 

context, or simply fixed, data Regions. A fixed Region is one which is constrained to the 

display of variables in the lexical range of but one program block, and from but one process. 

Whenever any instaice of that block, or any of its lexical parents, executes a data display 

statement, a data Scene containing a Snapshot of that instance will appear in the Region. 

The structure of data appearing in that Region remains fixed, although the values, and even 
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the procedure instances represented there, may change. The user should create a fixed 

Region for any program section whose behavior is of long-term interest. 

For convenience, we have relaxed the Snapshot requirement of Section 5.B4 to permit the 

retention of a data Scene in a fixed Region after the corresponding procedure instance has 

disappeared. This Scene is replaced whenever a new instance of the same context is created; 

it Is deleted whenever the process suspends, If no corresponding Instance really exists. This 

facility prevents a fixed Region from flashing and flickering, as instances appear and 

disappear. 

Our other application Is the manual observation of data values. In this instance, a data 

Scene responding to variable query, or to "single-step" operations, will not be changing 

rapidly. Successive operations might require the creation of entirely different data Scenes. 

For convenience and conservation, we would like to be able to display all these Scenes, 

successively, within the same Region. We will call such a Region a variable context, or 

variable, data Region.  Any data environment may be displayed in a variable Region. 

One variable Region must be selected at all times as a default for the display of data which 

do not fit into any fixed Region. Initially, the RDATA Region is the only available Region 

for data Scenes. RDATA is a variable Region. Until more Regions are created, it provides 

all data display services. The user can create specific fixc-d Regions, and additional variable 

Regions, If he wishes. In particular, he can designate a new variable Region as the default, 

to handle otherwise unasslgned display requests from running processes. The original 

RDATA Region may then react to his direct queries, without interference 

Due to our data Scene creation algorithms, variable Regions are susceptible to the annoying 

"flicker" properties which the fixed Regions avoid. 

I 
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CHAPTER 6 

THE CONTROL ALGORITHM 

This chapter completes the user-level presentation of COPILOT. It has three major sections. 

roughly responsible for describing: 

A) The Block and Process Structures of the COPILOT System 

B) The COPILOT terminal control (USER) loop 

C) Constraints on MISLE statements used for top-level control 

6.A.  SYSTEM STRUCTURE 

Every COPILOT job, whatever its function, can be expressed in MISLE as: 

procedure COPILOT 
begin 

•universal; 

•targets; 

commeiU system intrinsics, basic process-control primitives, global data 
structures; 

comment a Scene which in turn contains links to the program Scenes 
containing the user target, or applications, prograrm. 

begin 
•system; 

•post; 

•UCp; 

comment all IPS data and primitives, display primitives, invisible to 
Targets; 

comment a high-priority process to post state change information and 
data display requests; 

comment the special User Control Process (see text); 
•assistants,    comment processes created by the user to perform "macro" actions for 

him. They have access to IPS primitives and data.; 

sprout(post,post high), 
sprout(ucp,ucp higher); 
•user; comment the terminal-response program, the active body of COPILOT. 

end 
end comment the system; 

Figure t-l Global COPILOT Structure 

This program is contained within the system as a Scene nar. • \ Copilot. When a user 

activates a COPILOT System for himself, the target and assistants Scenes are empty, and 

the UCP is initialized as shown below During initialization, the equivalent of a 

Sprout(User.Copilot highest priority) operation occurs, placing the Copilot procedure in the 
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base of the environmental hierarchy: the process named User. This procedure, whose only 

active code is the basic control, or User loop, thus constitutes an entire COPILOT Job. All 

user and system subprocesses are, as evidenced in the skeleton above, formed from routines 

local to Copilot. (This skeleton is a "real" one: it supports the actual COPILOT system, when 

it is fleshed out by expansion of the Scene links). 

The target Scene contains links to :he user's target, or applications, programs- the programs 

which he has written, and with which he wishes to interact Target procedures, running in 

their own process or processes, have access only 'o the basic system routines and structures, 

and to the environments which they themselves create. They interact with system processes 

only indirectly (through the event mechanisms), when they suspend, terminate, or request 

modifications to data Scenes This denial of lexical access to system environment is useful not 

only in the protection it affords, but also in the storage efficiency it can support (ty allowing 

system routines and data to be "swapped out" of mam storap- while inactive- Section 8.D1). 

Target procedures, lacking convenient access to the IPS's interactive environment and 

facilities, can not be written to operate in the user's stead, performing directly statements 

which define the meanings of terminal commands Such an ability is desirable, both to 

facilitate execution of command sequences ("macros"), and to allow composition of more 

sophisticated sequences, embedding these IPS statements in conditional and iterative control 

statements. 

The assistant Scene is designed to serve this purpose. Routines which are contained in the 

assistant Scene, or m Scenes accessible from it, do possess the necessary access to perform IPS 

operations We will demonstrate in Section 9.A1 the means for invoking these sequences, 

and for maintaining system integrity when faulty routines are executed 

The sections which follow describe the operation of User, and its parasitic UCP. which 

define completely the input behavior of Copilot. The concluding section explains the role of 

the POST process in maintaining the Context Scenes- defining the output behavior. 

D 

,; 

,, 
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6.Ai The UCP - User Control Process 

The following represents the initial contents of the Scene named UCP: 

procedure ucp, 

begin 

»«lid 

A 

(The context and edit cursors are, as we have said, not part of the Scene data). The system 

implements but one instance of the UCP procedure, as shown above in Figure 6-1. The sole 

use of this process, also called UCP, is as a repository of user-submitted statements to be 

executed. Operation of the UCP is controlled exclusively by the User loop; descriptions of 

UCP functions begin in Section 6.B3. 

6.A2 Crucial Primitives 

We will introduce most of the IPS priimtives, those statements invoked by the user at the 

terminal, in the next chapter. A few, however, are crucial to the operation of the USER loop 

itself.   Brief descriptions of these routines follow. 

$tepp(proce$s."l"). This function is a special modification to the activate function. Its effect 

is to activate (make READY) the selected process, having first conditioned that process to 

suspend itself on completing one MISLE statement - the one in the current environment (IP, 

EP) for this process. Vv hen the process suspends, it will cause a suspension event, for the 

Post process, containing the location of the suspension and the reason (STEPPED) for it. 

Stepp is usually executed by a process at the same or higher priority than the process it 

readies, so that the activated process will not run until the activator next suspends. The 

stepped statement may be simple, or it may be complex, containing substatements and 

procedure calls which arbitrarily extend its effects and duration. If Stepp is applied to a 

running process, its effect is normally to extend that process's execution by another statement, 

before suspending; but see Section 7.C7. 

set p(proces$, statement). The instruction point (IP) for this process is placed, if legal, at the 

indicated statement (an expression derived from functions like the next one). 

I kMi „ 
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get struct($cene or region, line, space). This returns the unique statement identifier for the 

first statement beginning after tlie indicated point. 

insert line(scene or region, line, "string"). The string becomes a new line, in the selected 

Scene, just preceding the indicated one. This simple line-oriented function will suffice for 

insertions in the UCP   More versatile text modification functions may be found in Chapter 

7. 

delete liiie(sceiie or region, line, coun ). The number of lines indicated t/ "count" disappear 

from the Scene. 

6 B   THE USER LOOP 

,! 

J 

D 

The ultimate interface behavior of COPILOT is determined by the program which listens to 

the terniinal and responds to whaf it hears: the User loop. We shall first present a MISLE 

program for a basic User algorithm which \barely) implements a non-pre#mptive terminal. 

We shall subsequently subject this algorithm to a series of refinements which enhance its 

power and efficiency. 

The User process always operates at a scheduling priority higher than any other process's. 

This allows the '.«ser process (whose active agent is the User loop) to be set RUNNING 

immediately, whenever it becomes READY; the user's commands will have immediate effect. 

(See Section 8.E3 for our definition of "immediate"). Adjacent high-priority levels are 

reserved for the UCP, Post, and other special processes (see Section 6.A and Section 9.AI). 

n 

,1 

! 

Ü 

6.B1 Algorithm A - Basic 

This program, and all subsequent refinements, would occupy the Copilot Scene in the system 

of Figure 6-1. The meanings of undefined procedures in these examples will be explained in 

the text following each example. The initial loop does not require the UCP. 
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1 user: 

2 while true do begin 

3 string statement; integer char, state; 

4 read:    statement •• readalme; 

5 insert: insert line(user,8.statement), 

6 compil: update_world, 

7 doit: 

8 cleanup:delete line(user,8,l) 

9 end; 

Operation of this program is simple: it repeatedly accepts a one line statement from the 

terminal, inserts it into the text representation of User loop itself, translates (compiles) it, then 

"falls into" the just-presented statement, executing it in the environment of User. Before 

returning for more input, it deletes all representations of the statement. 

In the function Readaline the User process suspends, aiiuwing other processes to run. until 

the complete line (comprising but one statement) has been presented. When the line is 

complete, the User process supersedes ™y other running process and returns the resulting 

line as a text string. The Insert call puts this string into a new line between Doit and 

Cleanup. The function of Update-world is to perform any compilations necessary to make all 

program Scenes (including Copilot) executable as they are currently stated. We will defer 

any further compilation consideration until Chapter 8, where this and other implementation 

topics appear. The user sees only the source-language behavior; we shall at present assume 

that the system maintains all neceüary structures to make this behavior correct. 

The final delete statement returns the Copilot Scene to the state shown in the figure. 

This program alone, coupled with the posting algorithm below, can support a nearly non- 

pre«?mptive IPS with adequate visual context. It does not, however, satisfy all our behavior 

match requirements, nor is it free from other shortcomings. Our objections are listed in 

Table    6-1. 
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Tible 6-1. Shortcoming! of User Loop Algorithm A 

1) The Readalme function meets none of our abbreviation objectives, only complete 

statements are permitted. Commands requiring multiple lines are likewise not possible. 

2) The Ufei loop is selfmodifying! This is unacceptable in Copilot, for all the usual 

reasons. 

3) This algorithm maintains no record of the user's recent activity. Such a facility, 
although dispensable. Is desirable, both as a reference for the user, and as a source of 
statements for future operations (see Section 9.A3). 

4) If the statement at Doit require» a long (or infinite) time to execute, the non-pre«mptive 
facility is lost: the user has no way to terminate its execution. The class of permissible 
statements must be severely restricted, probably to the original system-provided 

primitives. 

5) In practice, this method prov«»« »oo inefficient for the execution of frequent, simple 
operations (especially simple text-editing commands). 

Remedying these objections is the goal of the refinements we have made to this algorithm. 

Let us first provide a mechanism allowing abbreviat d and "manipulative" commands, in 

order to eliminate objection «1. 

LI 
i 

.1 
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6.B2 Algorithm B - the Expand Routine 

To achieve the abbreviation we desire, we replace the statement at Read by: 

read:   char •- readachar; 

expand: case getcom(chai) of begin 

comment getcom provides a direct mapping of characters 

to commands, often many to one; 

f0( char ); 

i 
fi( char ); 

i 

D 

• 

fn( char) 

end 

end; 

This particular solution imposes a simple prefix grammar on our terminal "language"; 

another   method   with   a  comparable  result  would   be  equally   acceptable.    The  f^char) 

statements may use the original char, as well as local state information, and perhaps even 

additional input characters (via Readachar). To do this, it may have to implement a sort of 

local FSA interpreter, in order to gather and correctly interpret the parameters, etc. In other 

words, although there are no global modes in COPILOT, the basic User loop recognition 

algorithm may establish local modes, corresponding to parser states, to interpret the syntax of 

user input. This will normally go unnoticed, but will result in the need for a continuously 

active facility which permits abortion of a partially completed command input, in order to 

begin a different one. 

Executing any f, statement ttstgni a string, comprising a complete MISLE statement, to the 

string named statement, which is used, as before, in the completion of the User loop. This 

facility, expanding commands to calls on the primitive IPS functions defined in Chapter 7, 

permits the terse commands exemplified in Section 4.C2. 
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This is but one recognition algorithm. Any method for generating statement strings from 

input character sequences could be substituted for it, to provide a custom-tailored user 

interface (see Section 9.C3). 

6.B3 Algorithm C - Using the UCP 

This small modification removes objections «2 and «3 from the list in Table 6-1 (self- 

modification and the lack of a history list), and alleviates »4 (lengthy or non-terminating 

input statements). In Algorithm C. we replace the Insert, Doit, and Delete statements by: 

] 
J 

.1 

01 

insert;  in$eit(statement, ucp, currentlme), 

currentline «- currentlme ♦ I; 

compil; ... as before ... 

doit:       suspend(ucp), stepp(iicp); 

cleanup: if desired then delete(ucp, 2, I); comment optional; 

This algorithm does not modify itself (objection »2). Instead, it adds its statements to the 

UCP text Scene, then causes them to be executed in the UCP process. Depending on the 

predicate desired (optional), algorithm C retains all or part of the user's input sequence, or 

protocol, in this Scene. By mapping the last Window of this Scene to a Region, the user can 

have a visible record of his recent activity. This Scene may be edited, with interesting 

results.   We will pursue this subject further in Section 9.A3. 

Objections «2 and »3 h'ive been overcome by the introduction of the UCP Scene. However 

the most radical change in Algorithm C is the introduction of the UCP process. The Stepp 

call at Doit arranges to READY the UCP process. Its IP is set to the newly compiled 

statement. Its EP is the activation record for the UCP procedure within the UCP process; 

since the procedure ha* no parameters or local variables, this data environment it virtually 

identical to that of Doit. Thus this change in the algorithm cannot change the meanings of 

user statements. 

The User process, because it has the highest priority, continues to run after the UCP 

ac ivation statement at Doit, The User process does not suspend until control returns to 

Read; then the UCP, at a slightly lower priority, is guaranteed to run.   The UCP process 

a 
.i 

a 

.i 
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suspends again after executing the one statement. We have achieved the final decoupling 

needed for a non-pre#mptive system since, by giving another command, the user can 

supersede execution of the previous one (assured by the explicit UCP suspension at Doit). 

This implicit abortion facility, though useful for terminating long or runaway commands, 

may not always be desirable. See Section 9.B2 for further consideration of the conflict 

between "type ahead" and command "abortion". 

Although the decoupling achieved by executing user statements in the UCP process prevents 

any user-initiated operation from locking out (preempting) the c?rminal. it is not the 

preferred method for accomplishing lengthy functions. Instead, statements executed in the 

UCP should be restricted to those whose operations will complete in a time consistent with 

the response time of the system (a matter of one or two seconds at most). Anything which 

takes longer should be accomplished by activating a separate process to do it. The system 

provides this facility for standard kinds of operations (e.g.. string search within text Scenes), 

and could make it easy for the usv«r to use it for his own operations. The UCP's major 

functions are to collect a user input history and to eliminate modifications to User loop code. 

Normally, it will run in "lock-step" with the User process, behaving more as a subroutine 

than as a coroutine or parallel process. 

c 

; 

ii 
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6.B4 Algoritlnn D - Selective Interpretation 

We can expect certain basic operations to occur quite frequently during the course of a 

session with COPILOT Examples are cursor-moving operations, and process control 

functions such as Stepp To perform these operations on current hardware, using the 

insert/compile/execute algorithms of this section, is quite expensive. For more complex 

operations, even fundamental ones, the inherent flexibility of these methods justify the cost. 
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As one possible remedy to the expense of basic operations, we can enclose the final steps of 

the User loop with the following conditional: 

if length($tatement) * 0 then begin 

insert: ...; 

cleanup: ...; 

statement ♦- null 

end; 

Now any of the ft cases at Expand can leave the string variable (statement) empty, and 

directly execute the statement which it would otherwise store there. Since the execution 

environment at fj is effectively the same as the UCP environment, the effect is guaranteed 

the same. 

6.C. THE POST PROCESS 

The input services of the User-UCP process pair join with the output services of the Post 

process to define the interface behavior of COPILOT. Post maintains and displays the 

context Scenes. Whenever it runs, it updates the contents of the dynamic, the static, and all 

data Scenes, assures that all program Scene cursors are correct (other processes maintain the 

program text), and displays the results for visible Scenes. 
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A serious flaw in this modification is that by bypassing the Insert step we have eliminated 

the recording of some of the user protocol, thus re-introducing objection «3 (in Table 6-1), 

with an irritating mutation. We have deferred discussion of this anomaly to Section 9.BI. 

Fortunately, this recognition and expansion algorithm is easy to replace and modify, in a 

modular fashion (see Section 9.C3). J 

I. 

J 

.: 

The Post process runs only in response to specific status changes in the running processes, or 

to specific requests by these processes.   The mechanism in each case is the same: when a 
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process makes such a request or changes its status, it causes a posting event, whose value 

contains a code describing the reason. This occurrence wakes the high-priority Post process, 

which then issues an updated snapshot. 

The Post process operates in response to events caused by: 

1) Process suspension. The process has BROKEN, STEPPED, SUSPENDED, or is 
AWAITING some external waking condition (an event occurrence). The reason for 
suspension, and the current process state, are supplied in the event notice's value. 

2) Process activation. Snapshots are issued whenever a process becomes READY, and 
again when it begins RUNNING. 

(This choice assumes that processes change state infrequently with respect to the 
overhead for issuing a snapshot. We could choose to bypass snapshot issuance where 
process activation or suspension does not directly interact with the IPS facilities.) 

3) Data display requests. The statements of Section 7.DI, by causing posting events, cause 
variables to be added to and removed from DATA Scenes. The Post process responds 
by adding or removing these variables, then performing a standard update. 

We could have implemented posting through subroutines declared in Copilot's outer block. 

The scheduler routines and data-display statements would call them to report results. We 

have chosen the process/event mechanisms instead, as we have for other facilities, because 

this decoupling allows us to embed all system structures and display routines in a block 

inaccessible to target programs, attording them protection and name space independence from 

each other. In adu:tion, in Section 8.D1, we will show that this structure, with appropriate 

segmentation, helps us achieve space efficiency. 

6.CI Display of Users' Scenes 

The Post process only maintains context Scenes. However, it will update the display of all 

Scenes which currently have visible windows, this relieves the user of much of the effort of 

displaying his Scenes. He need only maintain the data in the Scene and indicate current 

cursor and window positions. He can have his programs issue a Post-only request for 

immediate visual response. In this way he can synchronize his data display with the Context 

snapshots. Facilities exist as well for directly updating a user-maintained Scene, for better 

efficiency. 
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CHAPTER 7 

COPILOT TERMINAL PRIMITIVES 

This "user's manual" chapter explains many of the terminal operations which are built in to 

COPILOT   It should also serve as a guide for the implementation of additional features. 

The first section deals with the user-accessible structures for describing and manipulating 

system entities such as Scenes. Regions, and processes. It also defines terminology for these 

entities. The following section presents a small number of variables, global to the User and 

UCP routines, which are central to system operation. 

Section 7.C is a description of the more important primitive system functions, and the 

terminal-level commands which use them. The last section defines the semantics of the 

special statements of Section 5.C5. 

7.A.  USER-ACCESSIBLE STRUCTURES 

In the previous chapters we prcsenteJ proc?s--control statements which used integer values as 

process designators. We did this because the M1SLE language lacks sophisticated data type 

facilities. We will extend the use of integer values as structure designators, to handle objects 

such as Scenes and Regions. We will also employ them as instruction point, environment 

point, and context point indicators (ip, ep. and cp). (t) 

A structure designator is always generated by the system, on request. Structure designators 

are unique, like LISP atoms or LEAP Items. Associated with each structure is a structure 

type code defining what kind of entity it represent:., as well as its actual value-. Scene data, a 

process stack, etc. 

Some structures (Scenes. Regions, processes) possess string-valued pnames, used to identify 

them in Scenes. Whenever such an entity is stored in a named variable, our convention is 

that the entity name and variable name should be the same. 

(t) In a language which provides structured data facilities, these entities lose their distinction. 
105 
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Instruction, environment, and context points could be represented as <5cene, line, colunin> 

triples, where program, data, or dynamic Scenes, respectively, would be selected. For 

convenience, however, we have chosen to define structu'-e designators for them, collectively 

called structptrs. One can derive from a structptr the <Scene, line, column> position it 

defines, as well as the process (if any) associated with it. 

Some procedures need the ability to accept as arguments structures of different types. An 

example is an editing function, whose Scene argument could be supplied directly as a Scene 

structptr, or indirectly by specifying the Region to which the Scene is mapped. Another 

example is a structure-following procedure which can be applied to any structptr (see the 

successor functions of Section 7.C4). These functions can obtain the structure types of their 

parameters, and can perform appropriate conversions, using the access primitives of the next 

paragraph. (Scene types are subtypes of the structure type "Scene"). 

.1 

.i 

■I 

.1 

7.AI Access Primitives 

From a given structure it is often possible to derive related structures or values: the Scene, 

line, and column locations of an ip, the Region corresponding to a Scene, or th« cm i em tin« 

and column locations for the edit curse ("A") m a Scene (or Region, if mapped). The 

following table defines a set of access (conversion) primitives and the structure types rhey will 

accept Legal types are marked "x" in the table; braces surround the entry ("[x]") if the 

legality of the function depends on the Scere type of its argument (e.g., an IP can only be 

obtained from a program Scene). Each function attempts to return some reasonable default 

when the requested value is meaningless (marked "-"), or does not exist. 

.1 

■j 
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Table 7-1. Structure Access (conversion) Primitives 

Struct. Type Sce'.ie Region 'P ep cp | )ro< 

Function 

GET SCENE • X X X     X - 

GET. REGION X • X X     X • 

GET LINE X X X X     - 

GET COLUMN X X X X     X • 

GET 'P w [x] ■ -    - X 

GET .UP [xl [x] • -    - X 

GETXP Ex] [x] - •    • X 

GET.PROCESS . . X X     X . 

I 
1 
: 

Ü 

I 

7.B.  GLOBAL STRUCTURE VARIABLES 

The variables of Table 7-2 form the bases for access to all IPS structures. They are 

declared in the System block (in the «system Scene); they provide access to all Scenes and 

Regions, most processes, and some location structures (structptrs). (The primitives for 

creating Scenes and Regions cause declarations for the new objects to be inserted 

automatically into the System block.) 
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RPROG, RDATA. ... 

PROG. DATA, DYNA. 

CURRENT.REGION 

CP 

IP 

EP 

Table 7-1 Global IPS Structure Variables 

Structptrs of the initial Regions. 

Structptrs of the initial Scenes. 

Structptr of the Region, in which the edit cursor ("A") is visible, 
and which therefore is affected by edit commands. 

Structptr of the current Context Point, seen in  the RDYNA 
Region as a context cursor ("►"). 

The Instruction Point selected by CP. 

The Environment Point selected by CP. 

.! 

D 
.1 

.. 

7.C.  THE COPILOT TERMINAL PRIMITIVES 
1 

The COPILOT design includes an intermediate mapp.ng between the terminal commands 

and the corresponding lengthy primitives. For each command we have defined a command 

procedure, whose name is short and at least moderately mi,emonic. which is defined in terms 

of one of the primitive functions (supplying the default arguments to it). Each command 

proceaure accepts only one or two parameters, those which the user might provide in his 

terminal commands. 

As an example, the command procedure expansion of the "<rept><cr>" command in Section 

7.C2 is "DOWN(<rept>)"; its meaning is, as before, 
MMOVEXURSOR(CURRENT_REGION,<rept>,-999,010)". 

Although the intermediate command procedures make sequences of IPS statements easier to 

read and modify (in the UCP and in assistant procedures, for instance), the extra lev.'l of 

mapping does not aid their exposition. In the descriptions which follow, we will directly 

express the COPILOT commands in terms of the primitive functions. 
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The casual reader need not study the function descriptions in detail; he may scan the calling 

sequences and read tne command descriptions to infer their general behavior. 

7.C1 Notation 

We have arranged the following pages in pairs: even-numbered (left-facing) pages contain 

the names, calling sequences, and descriptions of primitive functions. The odd-numbered 

(right-facing) pages describe the commands whose expansions use these functions. Some 

copies of this dissertation are printed in one side only. The reader may find it convenient to 

reverse the even pages in order to accomplish this correspondence. 

On the function description pages, when more than one structure type is permitted as a 

parameter, the alternatives will appear as [scenelregion]. This example will commonly be 

abbreviated [sjr]. 

The command descriptions employ the following conventions: 

The left column, labelled "COMMANDS", lists the commands, with possible parameters, 

using the notation of Table 7-3. The middle column, "EXPANSIONS", defines for each 

command the M1SLE statement, in terms of the specified parameters, which the User loop 

algorithm creates from that command, and which it will cause to be executed. The expanded 

statements in this presentation are all calls on primitive functions, using a "keyword 

parameter" form: PCALUx-5, y-"abc") means PCALL(5,"abc"), wr.cre the formals used in 

declaring PCALL were x and y, respectively. Whenever the procedure name is omitted from 

an expansion, the most recently mentioned procedure is intended; whenever a parameter is 

missing, the most recently mentioned parameter with the same keyword is intended. 
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Table 7-$. COPILOT Command Notation Convention! 

The CONTROL key should modify the command character 

The META key should be employed 

Both CONTROL and META are required 

Carriage return 

Line Feed 

<alt>    Alt mode -- a special "escape character" 

<vt>     Vertical tabulation character 

<sp>     Space, or Blank, character 

<bs>     Backspace, or Delete, character 

<rept>   A numerical repeat factor, composed of a<digit$> 

a 

a 

<cr> 

<lf> 
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Q 
EDITING COMMANDS 

j 
7.C2 FUNCTIONS. EXPLANATIONS u 

MOVEXURSOR([$cene|region],lines(spaces.windowline)limitflag) 

This function moves the edit cursor for the selected Scene a specified distance relative to the 
current edit cursor position for this Scene. It also adjusts the position of the window on the 
Scene, if it is mapped. • ' 

[scene| Must be a valid Scene, or 
region] the designator for a maoped Region.   In the latter case, MOVEXURSOR . 1 

applies GET SCENE to select a Scene, 
lines Number of text lines to move (positive is "down", negative is "up"). 
spaces Number of columns to move (♦/-)• ■ < 
wmdowhne If limitflag enables it, after determining the new cursor position, arranges the 

window such that line I of the window is 'windowline' lines away from the 
cursor line (♦/-).  Adjusts if necessary so that the cursor is in the window. . i 

limitflag 
0:     Cursor may move beyond current window boundaries, adjust window to make 

the cursor visible, if mapped. 
I:     Cursor may not move beyond current window boundaries. 
2;     Cursor may move beyond current window boundaries, place window as nearly 

as possible to the position indicated by 'winaowline'. 
3:     Cursor may not move beyond current window boundaries.   Update window 

after moviiig cursor. 

SETXURSOR([scene|region],line,space,windowline) 

This function is equivalent to: 

MOVE CURSOR(region.-999...9,-999...9,0,2). then 
MOVEXURSOR(region,line,space,windowline,2). 

In other words, SETXURSOR sets cursor and window to "absolute" positions (relative to 
the beginning of the Scene). 

FIND_STRING([sccne|region],"srchstr",number) 

This always uses GET.LINE(s|r) and GETXOLUMN(s|r) for its position. It searches frjm 
that position to the number'th occurrence of the search string, and does a ^ew 
SETXURSOR if it finds enough matches. Otherwise, the user is informed that the search 
failed, and the edit cursor is not moved. 

Preceding page blank 
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COMMANDS 

<rept><cr> 

<rept><vt> 

<rept><lf> 

<rept><alt> 

<rept>a<sp> 

<rept>a<b$> 

•T 

•B 

•J 

•W 

•L 

EXPANSIONS 

move  cursor ( 
region-current.region, 
limitflag-O, 
spaces - -999. 
lines - <rept> ) 

lines - - <rept> 

spaces - 0 
lines - <rept> 

lines - <rept> 

lines - 0 
spaces • <rept> 

spaces - -<rept> 

limitflag-1 
spaces- -999.9 
lines - -999.9 

lines - 999.9 

spaces - 0 
lines - 0 
windowline ■ line 
limitflag - 2 (or 3) 

lines - 999...9. 
limitflag - 3, 
windowline- -999.9, 

lines - -999 9. 
windowline - 999.9, 

<rept>»F<str><cr>    find  string ( 
region - current.reglon, 
srchstr - "<$tr>", 
number ■ <rept> ) 
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COMMENTS 

Moves edit cursor <rept> lines 
vertically, horizontally to left margin. 
Cursor may move out of current 
window,        requiring window 
adjustment. 

<rept><vt> performs •-<rept><cr>. 

Moves edit cursor <rept> lines 
vertically, but not horizontally. 

<rept><alt> performs »^repixlf;». 

Moves cursor <rept> columns 
forward, horizontally. 

Moves cursor <rept> column 
backward. 

Moves cursor to top left hand corner 
of screen (window). 

Moves cursor to bottom left corner. 

Moves current line to top of screen, 
adjusts window so that the line with 
the cursor is line one of the window. 

Moves the bottom line to the top of 
the Region (if possible), by adjusting 
the window. 

Moves the top line to the bottom of 
the Region, if possible. 

Sets the edit cursor to the location of 
the <rept>th copy of "str", starting at 
the current position. 

------ mÜ^^^^^^UA^MUi 
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EDITING COMMANDS, continued 

7.C3 FUNCTIONS. EXPLANATIONS 

NEXT.REGION (region, howmany) 

There is some reasonable circular ordering among Regions, based on their Screen position. 
NEXT REGION yields the Region structptr for the howmany'th region from the one 

specified. 

EDIT REGION(region. line, space, windowline) 

This function selects the specified Region for (terminal) editing. It then performs a 
SET CURSOR operation using the remaining parameters. If any parameter is -I it is not 
changed from the setting it had the last time this Region was edited. (Region-switching is a 
sort of coroutine-switching operation ) 

CHANGE CHAR([scene|region],line.space."char(s)H.number) 

CHANGE CHAR can refer to its Scene directly, or indirectly through its mapped Region. 
Its function is to insert, replace, or delete characters from the Scene. The edit cursor is 
always placed beyond the affected string on termination of the command. 

char A 7-bit character. 
number    -0: replace current character(s) with 'char(s)'. 

>0: insert 'char(s)' before current. 
<0: delete |number| characters at current position. 

scene, region, line, space as before. 

EDIT CHAR([scene|region]. "chai(s)", number) is: 

CHANGE.CHAR([scene|iegion]. GET_LINE([scene|region], 
GETXOLUMN([s|r]), "char(s)". number) 

INSERT LINE ([scene|region], line, string ) 
DELETE .LINE ([scenelregion], line, count) 

The specified string is inserted as a text line before the indicated line. (Or) count lines are 
deleted at the indicated line. 
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COMMANDS 

<rept>»R 

<arg>«R 

<char> 

(J<char> 

<rept><b$> 

<rept>aD 

<rept>»<cr> 

<rept>»D 

EXPANSIONS 

edlt_region ( 
line--l 
space - -I 
wlndowline - -I 
region - next  region 

(current_reglon,<rept>) 

region - <arg> 

change.char( 
line - get Jine 

(current.region), 
space - get .column 

(current   region), 
region-current_regioii, 
number - 0, 
char - "<char>") 

char - "<char>" 

space ■ cur.. - <rept> 
number - -<rept> 

space - cur.. 

space - 999...9 
char - <••••...#> 
number - I 

delete.line ( 
region - current  region 
line - get   line(current   region) 
count - <rept> ) 
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COMMENTS 

Selects for editing the howmany'th 
Region from the currently selected 
Region. Makes the edit cursor 
visible in that Region. 

Selects the named region, as above. 

<char> Is a 7.blt, non-activating 
character. Replaces with it the 
character under the edit cursor. 

Inserts  <char>   at  the  edit  cursor. 
Move other characters over. 

Deletes <rept> characters t(» the left 
of the edit cursor. 

Deletes <rept> characters to the right 
of the eo<: cursor. 

Inserts <rept>  new  lines  after  the 
current one. (• is <cr>). 

Deletes <rept> lines. 
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STRUCTURED EDITING COMMANDS (PROGRAMS, DATA LAYOUTS) 

7.C4 FUNCTIONS, EXPLANATIONS 

structptr *• GET_STRUCT ([scenelregion], line, space) 

In a  PROG Scene, finds the closest statement to the specified location, and  returns its 
structptr. The effect is similar in a DATA Scene, returning the closest equation (next page). 

structptr #■ EDIT^STRUCT ([scenelregion]) 

EDIT .STRUCT([s|r]) is defined as: 
GET_STRUCT ([s|r], GETJ,INE([s|r]), GET_SPACE([s|r])) 

structptr - NEXT_STRUCTURE (structptrI, "code") 

code        T   Given     structptr I     (denoted    by    SC     in     the    following     examples), 
NEXT.STRUCTURE returns its successor (SN In these examples): 

... BEGIN ... SC; SN ... END; 

... BEGIN ... BEGIN .... SC END; SN ... 

... IF ... THEN SC ELSE SN; ... 

"T"   Returns the predecessor to structptr 1.  The definition is similar. 

V   Returns the first substructure of strucptrl, if it has any.   Otherwise returns 
structptr I: SC is structptr 1, SN the resultant substructure in the following: 

... SC: BEGIN SN; ... END; ... 

... SC: IF ... THEN SN ELSE ... 

... SC: SN; I«-3; ... 

V"   Returns the "father" structure, SN, to the given structptr I, SC: 

... SN: BEGIN .... SC;... END; 

... SN: IF ... THEN SC ELSE ... 

"H" Returns a structptr to the block or compound statement containing the given 
structptr 1. 
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COMMANDS 

•1 

•T 

•H 

EXPANSIONS 

struct  move ( 
region - current region, 
code - "1") 

code - "t" 

code - V 

code - V 

code - ":" 

code - "H" 
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COMMENTS 

Moves edit cursor to the statement 
(or corresp. structure, for other Scene 
types), following the stmt. nearest 
current the cursor pos. 

Moves edit cursor to the statement 
preceding the nearest one. 

Moves cursor to first nested stmt. 

Moves cursor to father stmt. 

Moves edit cursor to the statement 
nearest its current position. 

Moves cursor to block head 
containing the nearest statement. 

-    - .^_ 



mmmmimmmmmmm'    > ''■■"" "*i.im» I III  III IIIIHIia.HUIWHIJIII ^wmmmm 

PROGRAMS. DATA LAYOUTS (cont) 

7.C5 FUNCTIONS. EXPLANATIONS 

STRUCT_MOVE (region, "code") 

k 
STRUCT_MOVE is defined as: 

BEGIN 
integer stmt; 
stmt»-EDIT. STRUCT(region ); 
if code * H:" then 

stmt - NEXT.STRUCTURE (stmt.code); 
SETXURSOR (region. GET_LINE(stnit), GET.CÖLUMN(stmt), -I) 

END; 
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APPLICATION OF STRUCT_MOVE TO OTHER SCENE TYPES: 

DATA SCENES -    Let EC be the equation nearest the edit cursor, EN the equation 
identified Ky that cursor after perfoming the command: 

•t 

•: 

3.proc#2(...ECp EN ) 
3.proc«2(....EC); begin EN;... 
EC: 3.proc«2(.); begin ... end; EN: 
(inverse of «i) 
EC: 3.proc#2(....): begin EN; 
(inverse of ♦-•) 
EN-EC. 

DYNA SCENE - Each number is some instance node- "V means "yields' 

I 
5 

I 
6 

•i at 1 s 2 »i at 2 3 3 
♦i at 4 a 5 «T at 4 a 3 
•T at 5 a 2 •-» at 2 3 5 
•-» at 5 3 5 •<- at 6 3 2 
•♦- at 2 3 2 •«- at 4 3 4 
•H at 6 3 5 »H at 4 3 | 
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SCENE MAPPING 

7.C6 FUNCTIONS. EXPLANATIONS 

scene ♦- SCENEJLINK( t$cene|region]. line, space) 

This command follovs Scene links ("• scene" constructs). Given a location within a Scene, it 
finds the nearest Scene link, if any, and returns a structptr to the Scene it identifies. If there 
are no Scene links, it returns a null structptr. which should be treated as an error or "no- 
operation". 

MAP-SCENE (scene, region, first line, fspace. fwindow) 

This makes the Scene visible within the Region, and sets the window and edit cursor 
poitions as specified, using SET .CURSOR. 

D 
.1 
.i 

.; 
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CONfMANDS 

•M 

<arg>»M 

EXPANSIONS 

map scene ( 
scene - scene Jink ( 

region-current  region, 
line - cur..., 
space - cur...), 

region - current_region> 

first line - 1, 
fspace - I, 
fwindow - 1 ) 

scene - <arg> 

COMMENTS 

Follows the nearest »scene link 

Maps the Indicated Scene Into the 
current Region (the one with an edit 
cursor). 
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code; 
T   Single-steps one statement. 
"V   The same as "4", »f the statement at I«1 has no substatements.   Otherwise, 

executes to the first encountered substatement (see examples on next page). 

Stepp activates the process, at its current IP and EP, first setting Synch variables to suspend 
after the desired execution. The V code suspends execution at the first encountered 
substatement of the one indicated by IP. 

STEPPN ( process, n) 
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PROCESS CONTROL 

7.C7 FUNCTIONS, EXPLANATIONS U 

SET_P ( process, [ip|ep|cp]) 

Places the context cursor at IP if structptr is a statement. EP if it is an instance in a data 
Scene, or CP for a dynamic Scene. 

STEPP ( process, code) 

i 

.1 

i 
This  is  a  multiple-step  command.   If n-2, it executes  the next  two  statements  before 
suspending; if n-3, the next three, etc.  When applied to a statement within n statements of \ 
the end of a loop statement, n is reduced to prevent executing beyond that scope. 

STEPP(—."1"), when applied to a process which is already being stepped, has the effect of 
STEPPN(—,n), for n-2. 3,... 

(ACTIVATE (process). SUSPEND (process), SUSPALLO ) 

These are the normal MISLE functions for activating, and suspending processes.  SUSPALL . 
suspends all but USER. 

TOXONTEXT (process) , 

This sets RDYNA, RSTAT, RPROG, and RDATA Regions to the Scenes describing the 
context point of the selected process. If -1 is the argument, it alternates among the suspended 
Target processes, beginning with the mo:t recently broken one. This is the normal way to 
establish context after a BREAK. 

Process either -I (some broken process), or a process id. 

I i 
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COMMANDS 

•; 

•X 

<arg>»X 

<arg>»S 

•S 

•P 

<arg>«P 

{<arg>}«. 

•B 

<arg>»B 

<arg>»^ 

EXPANSIONS 

$et_p( 
process - get „process ( ep ), 
edit  struct(current  region)) 

stepp ( 
process ■ get  process(ep), 
code » "1") 

process - <arg> 

_1 MM code »  -» 

process - get proce$s(ep) 

activate ( 
process ■ get.process (ep)) 

process - <arg> 

suspend (get process (ep)), 
or <arg> 

suspall () 

edit   diar( 
region - current   region 
char(s) - "(break 

(get^proce$s(ep)))". 
number » 1); 

process « <arg> 

to_context (process ^ -I ) 

process - <arg> 
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COMMENTS 

Moves tht context cursor, 
representing an ip, ep, or cp 
(depending on Scene type), to the 
stmt, equation, or procedure 
instance nearest the edit cursor. 

Single-steps one stmt. in the p 
context cursor is visible (the current 
process). 

Single-sleps the selected process 

"Steps in" to (executes to the first 
substmt. of) the current stmt. of the 
selected process. 

"Steps in" to the current process 

Proceeds- readies the current 
process. 

Readies the selected process. 

Stops (suspends) a process. 

Stops all processes. 

Sets a break point at the edit cursor 
pos. Will break only when the 
process encountering is the one 
which now has the context cursor. 

instead of .get_p... Sets a break 
point at the edit cursor position and 
specifies which process can trigger it. 

Switches context Scenes to a 
representation of the environ-ment 
of some reasonable process (see 
previous page). 

Switches to the context of the chosen 
process. 

——                    



DIRECT STATEMENTS 

7.C8 FUNCTIONS. EXPLANATIONS 

EVALCstatement". ip. <p ) 

Effectively, the statement is inserted in the scene at ip. Then it is executed in the 
environment (therefore the process) of ep. When the process suspends (on eventual 
completion of that full step), the statement and all levels of representation are deleted. 

Ü 

J 

! 

I    ! 
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COMMANDS EXPANSIONS 

•!llne<cr> line 

COMMENTS 

Executes the line as one statement. 

•*llne<cr> evalOlne", |p, ep) Evaluates the line in  the selected 
environment. 
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7.D   SEMANTICS OF SPECIAL STATEMENTS 

In Section 5.C5, we presented the syntax for a set of MISLE constructs which are especially 

useful in an interactive environment. At that time we had not adequately presented the 

contexts in which they are useful. Here we will explain these special statements, by means of 

several examples. 

7.DI Variable Query (Data Display) 

Example J; Kt2*S; 

A data display statement comprises a single expression. Executing one causes that 

expression's value to be displayed in a data Scene. The first statement, above, is 

representative of the most common use: the display of a named quantity. The variable J (in 

the scope of the current context cursor), is given the marked attribute (Section 5.D2), if it 

does not already possess it. this will cause an equation to be created for J, in any data Scenes 

which display instances of the block or procedure in which J is declared. Data display 

statements execute by causing posting events which awaken the Post process. When this 

process runs, it causes all visible data Scenes to be updated- thus displaying J's current 

value, among others. 

The second example above causes (he selected expression to be displayed temporarily in the 

default data Region (see Section 5.HI). It is difficult to formulate a general algorithm for 

doing this satisfactorily.  We will explore the problem further in Section 9.A2. 

7.D2 Breakpoints 

Example; BREAK(-1>, 

This statement always breaks. To do this, it simply suspends, after causing a POSTmg 

event. The post process subsequently indicates in the ST AT Scene that the process has 

BROKEN. The user can, when he chooses, turn his attention to the broken process, 

examine its causes, then take whatever action is appropriate. 

Example: BREAK(TARGI>, 
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This statement will break only when the process encountering it is the one designated by 

TARGI. 

A last BREAK statement, ARR BREAK, takes an array as its parameter, and will break if 

the running process is any of those specified in the array. 

7.D3 Temporary Statements 

Example: 

{TEST.SRCH: ON! IF SEARCHXNT MOD 50 .-0 then BREAK(-I)} >PT3(XMT); 

A temporary statement of the form { tsl; ts2;... tsn } si is functionally equivalent to BEGIN 

tsl; ts2; ... tsn; si END. Similarly. $1 {tsl; ...} behaves as BEGIN si; tsl; ... END. We make 

the distinction for three reasons: 

1) As a purely visual device.   It is easier to see that the statements within the braces are 
temporary. 

2) To aid in insertion and deletion.  One need not find the end of the qualified statement 
(e.g., $1) in order to place an END there, or to remove it. 

3) To allow the additional <class> and <switch> syntax. 

A temporary statement containing the switch "ON" behaves as one without a switch at all: all 

its substatements are executed in order, as described above. However, if a temporary 

statement contains an "OFF", none of its substatements are executed. One may thus turn a 

temporary statement on and off by toggling this execution switch. Section 8.E8 presents an 

implementation for this feature which allows inactive (OFF) temporary statements to be left 

in a program, at no execution cost. 

The class label need not be unique to one temporary statement. If a set of temporary 

statements exists, whose collective function is to monitor a particular situation, one may give 

them all the same class name. He may then use the TURN ON and TURN OFF statements 

to toggle all members of a class simultaneously. Class names are global labels, whose scope is 

the entire system. 
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The DELETE statement physically removes all statements labelled by a given class name 

from the Scenes they modify. 

Temporary statements give us nearly all the power of Teltelman's ADVISE facilities for 

BBN Lisp, which allow a user to change temporanly the meaning of a function, whether 

compiled or interpreted, whether defined by the system or user. We cannot provide his 

selective advising facility in the current design. (When this is specified, a function Is 

modified by its advice only when called from one of a selected list of functions.) 

7.E.  CONCLUSIONS 

We have presented in this chapter only the essentials of COPILOT. We are convinced that 

this design provides the basis for many elegant capabilities which are not possible in a 

preemptive system, or in one which presents less context. Some suggested extensions to 

COPILOT appear in Chapter 9.  Others will require further research. 
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CHAPTER 8 

IMPLEMENTATION CONSIDERATIONS 

8 A.  TIERS 

We have intentionally couched all our descriptions in terms of the Text Scenes which the 

COPILOT user can see directly. We have demonstrated that we can provide a remarkably 

rich set of primitives for IPS control in these terms. 

To provide the facilities described in the previous chapters, we require, in addition to the 

Text Scenes, the support of additional structures. We can see clear evidence of the kinds of 

structures required in the following: 

1) We need the Text itself, for visual display and text operations. 

2) We need to locate the Tokens, within a text line, which begin selected statements, as, for 
instance, in the EDIT STRUCT(...) (•:) command. Some internal representation of 
program text as lists of Tokens would be useful, though not absolutely necessary. 

3) We need access to the program structure, or abstract syntax tree [38], of the user's 
program, m order to perform operations like STRUCT_MOVE (•-♦, »i, etc), and 
process control operations. Similarly, we need a structured representation of the names 
In the user's program (a symbol table), closely related to the program tree. 

4) Because we have chosen a compiler-oriented system, each statement m each PROG 
Scene must have a corresponding code segment which, when run on the host machine, 
will perform the specified actions. Conversely, the data (activation records) on which 
these segments operate may be reflected in DATA Scenes at the text level. 

We will call these levels of data representation Tiers. These same four kinds of Tiers (text, 

token, tree, and code) exist for most of the Context Scenes in COPILOT. We will treat each 

use in detail below. Each Tier is the most convenient representation of the facts it expresses 

for some class of system operations. 

8 Al Tier Equivalence 

For each Tiered quantity in the system there is a source Tier, where new information is 
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introduced. For programs, this is the text Tier, where new statements are added. For data, 

the code Tier (of activation records) usually supplies the needed information. The contents 

of each Tier (other than the source Tier) is the byproduct of some translation operation. For 

programs, these operations have familiar names: 

NAME TRANSLATION (Tier 1 to Tier 2) 

Scanning 

Parsing 

Compiling 

Text to Token 

Token to Tree 

Tree to Code 

For data representations, we could speak of Uncompiling, Unparsing, and Unscanning, 

beginning with activation records in the Code Tier, yielding readable Data Language 

"programs". 

In each case the intent is to create a representation which is In some sense equivalent to the 

original; that is. Its meaning with respect to some set of attributes is invariant over the 

translation. (For compiling, this Is the requirement of correctness. Most formal treatments of 

compiler correctness concentrate on proving thi» "equivalence" between the abstract syntax 

(Tree Tier) and the Code (Code Tier) [39].) In order for the translation to have any value, 

of course, there must be other attributes which are not invariant: some information will be 

lost, while other things will be added. Using our program example again, the scanning and 

parsing operations do not carry program format (spacing, etc.), into the Tree Tier, nor do 

they always preserve the order of expressions, or even the precise choice of keywords and 

operators. In addition, through these translations, explicit structural information about a 

program is added. Further compilation (to code) usually loses some of this structural 

information, and much symbolic data, while gaining efficient code for execution. 

We will say that structures in two Tiers are weakly equivalent, or simply equivalent, if they 

satisfy (or presume to satisfy it)) specified correctness criteria for a selected set of attributes. 

We will say that two Tiers are strongly equivalent i( either can be completely regenerated, 

given the other. 

{%) We shall not offer any proofs. 
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There must be, for each class of multi-Tiered entities, and for each adjacent pair of Tiers, a 

translation rule (algorithm), operating in at least one direction, which will convert from one 

Tier to the other. Compilers, parsers, and scanners are elements of this set of translators. 

8.A2 Inter-Tier Connections 

The data of two equivalent Tiers need not be fully independent. Each may contain 

references to locations or entities in the other. It must be possible, for instance, to find the 

statement in the Code Tier corresponding to a given node in the program tree. 

This division of IPS structures into Tiers and connections between Tiers allows us similarly 

to segment the universe of IPS system routines into those which deal with the relationships 

between "adjacent" Tiers, (compilers, etc., as well as routines like GET .STRUCT and 

GET .LINE), and those whose effects are confined to a single Tier (e.g., MOVEXURSOR 

and STRUCT.MOVE). 

We will find that it is useful in some Tiers to minimize the number of extra-Tier connections, 

while other Tiers will contain numerous connections to their neighbors. We will discuss the 

advantages and drawbacks to this imbalance in Section 8.D. 

D 
:: 

8.A3 Tier Fidelity 

In his thesis [44], Mitchell states what he calls a Visual Fidelity Principle, which requires 

that "the user must be able to expect that the appearance (text) of a program is a reliable 

indication of the way that program acts (its semantics)." While this is predominantly a 

restatement of our Tier equivalence requirements, it carries some additional implications. 

Program Tiers are not always equivalent; there is a time after new text has been inserted in 

a program, but before it has been translated, when they are not. If we use the Visual 

Fidelity Principle as our guide, we require only that Tier equivalence between text and tree 

be restored before doing any structured editing, and that tree and code Tiers be updated 

before attempting execution of the modified algorithm. We can extend this notion of fidelity 

to other translations, specifying for each the conditions which require that necessary 

translations be made. For instance, code-»tree-»...-»text translations, for data, dynamic, and 

status information, must occur whenever a posting event (Section 6.C) occurs; and our 

Snapshot requirement (Section 5.B4) means that all such translations must be done whenever 
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any is done. (The Snapshot requirement states that the visible data must represent a subset 

of total system state at a single previous instant.) 

8.B   SCENE-TIER RELATIONSHIP 

In the previous chapters we have developed two mechanisms for storing, naming, and 

manipulating the data structures in our IPS: Scenes, for managing the text that presents 

elements of the system to its user; and Tiers, for relating this text to its underlying structures. 

In this section we will consider thr relationship between these mechanisms. 

.1 

.1 
Ö 

We will define the specific conditions for each COPILOT translation in the following 

sections. These conditions may be different in other IPS systems, depending on the methods 

of translation and interpretation. 

8.A4 Tiers in other Systems 

The Tier concept is our attempt to normalize the naming conventions for the kinds of 

structures which have been developed for IPSs (and other language systems), including 

COPILOT. All of the systems we reviewed in Section 3, for Instance, have constructs 

corresponding to the Text Tier; most possess representations corresponding to one or more of 

our other Tiers: JOSS maintains text only. Most LISP systems keep the trees (S-expressions) 

and, for compiled functions, the code. Mitchell's system has representations at each Tier 

level. We are satisfied with the generality of the Tier levels we have chosen, since we have 

encountered no trouble in categorizing the structures of other systems in terms of these Tiers. 

.! 

.1 

J 

Ü . 

ül 
Ü 

.! 

i 

For each COPILOT program Scene in the text Tier there is a directly corresponding 

collection of token lists in the Token Tier, equivalent to it. Similarly, for each of these 

collections there exists an identifiable set of equivalent (*) instruction segments in the code 

Tier. It would be tempting to extend this observation, and to state that each Context Scene 

can be considered a multi-Tier structure, with disjoint equivalent representations In each 

Tier (Figure 8-1). This technique, however, immediately leads to trouble in the tree Tier. 

Since the information in a data Scene represents data generated from the algorithms of 

(*) Always in the weak sense 
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D 
program Scenes, one must expect this relationship to be expressed at some level, through 

shared structures. The natural place for this sharing is the tree Tier. In COPILOT (Figure 

8-2. and Figure 8-3). the tree structures which express data Scene information share 

symbol table nodes with the program trees; from these symbol nodes, block structure 

information from the program tree itself is available. 

Another difficulty with the disjoint structure of Figure 8-1 is that many data Scenes may 

exist at once, for many simultaneous instances of the same procedure. These occurrences 

place a many to one relationship between some Text Scenes and some elements of their 

equivalent representations. Notice that not even data Scenes and their code Tier information 

need be in one to one correspondence, since the same information can appear in more than 

one data Scene. 

Because of these arguments, we will relax our proposed Scene-Tier requirements, demanding 

only that. 

1) An observer with access to all system data can derive from a quantity in one Tier all 
equivalent quantities (I-1 or 1-many) in all other Tiers. 

2) Where necessary, direct or computable connections exist between Tiers to allow 
programs to derive the equivalent entities. Not all possible connections need be 
derivable 

D 
D 
D 
;: 

i 

8.Bi Permanent Scene Representation 

For each type of Scene, one or more Tiers contain the most complete information about that 

Scene. From that Tier, all other representations can be generated. The source Tier (the one 

into which new information can be introduced) must be one such Tier. 
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We designate one of these Tiers as the Permanent Tier for each Scene type. We can then 

choose to maintain equivalent information in the other Tiers only when it is necessary. The 

permanent Tiers for each context Scene are: 

SCENE TYPE SOURCE PERMANENT 

PROG Tree Token 

DATA Code Code 

DYNA Code Code 

STAT Code Code 

.1 
1 
: 

i 

Examples: data, status, and dynamic text Scenes are not needed at all for non-interactive 

system operation. Thus it is possible never to generate Token or Text level information for 

them at all, as long as the code and trees exist for regenerating them. In COPILOT, 

program Scenes need only exist in the text Tier when they are mapped to Regions, or when a 

text-oriented function needs to look at it. We maintain all programs permanently in the 

strongly equivalent Token Tier (see Section 8.C2). 

While a user is logged in, COPILOT maintains his program representations for all Tiers. 

To save space, we could choose to delete Code and Tree information when the user leaves 

the system. This information would be regenerated when he next logged in, returning his 

system to the state it was in when he left. Notice that, although there are multiple 

representations for a given program, they all represent the same algorithm, maintaining the 

illusion that there is but one representation- text Scenes- within the system for a user's 

program. 

.: 
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Figure 8-1. (Inadequate) View of Scene/Tier Structure» 
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PROCEDURE P3 (INTEGER PARAM); 

BEGIN 

INTEGER   I.J.K; 

l*-J*K; 

END; 

SCENE ITEM 

TARG 3.P3 #1 (PARAM^OO)-, 

BEGIN 

1=1540; 

K=-3 

END-, 

TEXT 

SCENE  ITEM 
TOKEN 

BEGIN PROC 
SON O: TEMPLATE 

FROM 
O^NA 
TREE 

RELOCATABLE 
INSTRUCTION 

SEGMENTS 

OTHER 
SEGMENTS 

PROGRAM      TIERS 

TREE 

FROM 
DYNA 
TREE 

DATA    TIERS 

Figure 8-3. Overall View of COPILOT Tier Structures (part I) 

l?7 

    



wmmmmtmammm iqr*'^*^*^*m^mm*mm*mm***m mjmrmmmm^^m 

i 
2 
3 
4 
5 
6 
7 

:  8 

USER COPILOT #1 

I TARG3.PI#I 

1 
TA^G 3.PI #2 

I 
TARG3.P3#I 

TEXT 

NO TOKEN TIER NECESSARY 
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Figure 8-4. Overall View of COPILOT Tier Structures (part 2) 
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8.Ci Text Tier 

We have exhaustively described this level. Its implementation is straightforward, providing 

for the storage, insertion, deletion, and replacement of lines of text. For convenience in 

implementing the user-level routines, these structures may be indexed by tine and character 

number. Each line in the text Scene contains a reference to the LEAP item, in the token 

Tier, which represents that line. 

8.C2 Token Tier 

The output of a language processor's lexical scanner is a sequence of tokens, internal 

representations of the language symbols. In most languages, including MISLE, many 

program symbols are members of the relatively small set of terminal symbols, and the rest are 

Identifiers and constants chosen from a relatively small number of declaration instances. 

Therefore, by proper encoding, an expression of the program in terms of these tokens may be 

smaller than its t-xt representation, depending on the implementation and the user's identifier 

naming style. Its chief advantages, however, are the Increased parsing speed when sections of 

the text must be recompiled, and the additional structure which can be maintained in token 

lists (see Section 8.A). For these reasons we have chosen the token Tier as the permanent 

Tier for programs. To do this, we must achieve strong equivalence by adding format 

information, chiefly to specify where spacing characters were present in the original. Figure 

8-5 exhibits a section of the token Tier for the accompanying program. The Scene at this 

level is a two-way threaded chain of line items, each of whose datums is the token list and 

spacing information describing the line. Linked to each line item is an index into the text 

Scene for that line. 

We have taken advantage of the discreet nature of token lists to insert connections to the tree 

Tier, so that statement nodes may Oe located (by CET_STRUCT(...), fjr instance). These 

frsmrk items (see Figure 8-5) are distinguishable from token entries. Tieir datums contain 

indices to aid (along with FIRST and LAST links) the inverse tree-to-token conversions. 

We will introduce some additional Token structures in Section 8.E2, when w« discuss the 

storage and parsing of program modifications. 
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FROM TOKEN --♦ I BEGIN 

FR0MT0KEN—*2 INTEGER  i,j;    (LEVEL   I) 
3 ]«-3,i«-]«3*5; 

4 BEGIN 

5 INTEGER i.k;       (LEVEL la) 

6 k«-j-5;i«-k«fn(j)*7; 

7 IF i<j*l THEN... ELSE... 

8 END; 
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Figure 8-5 COPILOT Program Text and Token Tier» 
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8.CS Tree Tier 

This is the central data structure of the IPS. Program trees are the product of parsing 

operations ([36], [44]). Other tree Tier structures (data, status, dynamic) are derived 

from code-level information. The program tree of Figure 8-6 represents a fragment of the 

programs of the previous figures. It implements n-ary trees, where n is sometimes fixed ("IF 

<be> THEN <s> ELSE <s>", n-3), sometimes variable ("BEGIN <s>;... <s> END", n-n). The 

trees are connected by leftmost-son, next-brother linkages [31]. The tree is pruned, after 

compilation, to include only the statement structure and lists of identifiers and function calls 

which appear in each statement. Although this limits the amount of resolution we can 

achieve in program control and in recompilation to statement units, it does not seem to us a 

great problem in view of the gain in compactness, especially for long, complex operations. 
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8.C4 The Symbol Table 

We have placed the symbol table (t) in the tree Tier, because of its close ties to the program 

trees. Links from symbol entries to the block and procedure nodes In this tree def.ne the 

scope (range of access) of the instances of a given name. 

F gure 8-7 contains a program tree, pruned of all but block structure detail. The symbol 

entries are accessible in a variety of ways: 

1) As terminal program tree nodes. The compiler follows the SEMIS connections to these 
entries to generate access or calling sequences for data and procedures. 

2) By their point of declaration. Any local variable or formal parameter can be reached 
from the node for the block or procedure containing its declaration. The same links, 
followed backward, allow identification of the scope of a given entity. 

3) Symbolically. There is a unique name item in COPILOT for each identifier name. 
Linked to it by SYM links are all the entities (symbol items) with that name. In most 
of the applications we have described, environmental information (in the form of block 
or procedure nodes) is then used to choose the correct entity for the current scop;. 

Symbol table quantities, though all their connections are in the tree Tier, are really multi- 

Tier entities. Identifiers in the token Tier lists are actually symbol items. Additionally, 

symbol items appear in generated code, to identify procedures on the stack, and to select 

variables for display. 

(f) The use of "table" is historical, since our actual structures are hardly tabular. 
14b 

....^..^^■^—^       B 



jpv.<\ iiiiiivii jni^n.iKiiiuiiji nojMpp^^^   jLuuj(wi>i|«aiip(P«ippMpiP' .«pi'i.i mm''*^mimmmmmm  •"^I 

1 BEGIN (LEVEL 1) 
2 INTEGER i,j; 
3 BEGIN (LEVEL la) 
4 INTEGER i,k; 
5 
6 END; 
7 BEGIN (LEVEL lb) 
8 INTEGER i.m; 
3          ••• 

10     END 
ii END; 

BEGIN -- LEVEL 1 
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Figure 8-7. COPILOT Symbol Table Organiiatiou 
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8.C5 Other Trees 

Figures 8-3 and 8-4 are examples of tree Tier structures underlying data and dynamic Scenes. 

There is one tree structure for the dynamic Scene, and one for each current data Scene. 

These trees are heavily connected to their "templates" in the program tree- algorithmic and 

symbolic information. This sharing of structure reduces the amount of tree Tier Information 

which must be maintained for non-program Scenes. 

In Chapter 7 we introduced entities called structptrs. produced by access primitives such as 

GET IP and CET_EP1 to provide compact representations for statements, data 

environments. Scenes, etc. In the COPILOT implementation, these structptrs are integer 

representations for the items forming tree nodes, token Tier entities. Scene and Region items. 

Extending MISLE to include the entire implementation language (SAIL) would eliminate this 

conversion, allowing structptrs to be directly represented as items. 

8.C6 Code Tier 

Since COPILOT is a compiler-based system, the most important (least dispensable) product 

of program translation is the set of machine instructions comprising the code Tier for 

programs. However, most aspects of code generation do not bear heavily on our IPS 

considerations. Consequently, we shall not discuss code generation techniques as such. (*) We 

will be content to list the requirements and constraints which our generated code satisfies, in 

order to interface properly with the IPS and process facilities. 

I. The code is organized as segments, built around the statement structure, which can be 

independently replaced. Major control points, labelled statements, procedures, and blocks 

always begin segments. Segments are limited in size, so that recompilation of still-correct 

statements in replaced segments will be acceptably infrequent. The compiler routines control 

the replacement, insertion and deletion of code, always in segment units. 

it) We  might   suggest  Gr.es's  book. Compiler Comtruction for  Di6it.l CompuUrt  [23],  as  *n 
excellent reference for all aspects of compilation. 
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2. Code segments are relocatable. A segment can be moved in order to compact storage, or to 

accommodate the expansion of other storage blocks. We have chosen to make all but a small 

number of header instructions in each segment address-independent. The header words 

contain transfer instructions which link each segment to the segments which precede and 

follow it in the execution sequence, and to the segments which implement its substatements. 

The base address of a running segment is available in a machine register to allow relative 

transfers of control within the segment. Other registers provide data access. Transfers to 

other segments from within a segment are performed by transferring to instructions in the 

segment header. When a segment is moved, only the header instructions in those segments 

which link to it must change. We can locate these other segments by referring to the tree 

Tier structures, which contain complete segment location information. 

3. To allow program modifications, we can delete and insert arbitrary code Segments. Given 

our relocation facilities, this is rot hard The tree Tier contains a complete description of the 

segment structure of the Code Tier. After a new segment or set of segments has been created, 

after header instructions have been inserted to link them together, and after the segments to 

be deleted have been identified (see Section 8.E5), it is then easy to modify the relocation 

routines to treat the new Segments as relocated versions of the old ones. 

4. We insert synchronization instructions in the code, to denote points where process- 

rescheduling interrupts may take effect; so-called "clean points". These synchronization 

instructions also provide a mechanism for controlling Stepp, Break and data display 

operations. 

b.C7 Synchronization 

We have chosen to use the statement as our gram of resolution for synchronization. This is 

evident in the primitives of Chapter 7, where control is available down to the statement level. 

(*) 

Within the data for each process, we allocate a variable, which we call a synch cell, for each 

code segment which can operate in that process.   A synch cell, normally zero, may be set by 

(«) We may also gain control at orocedure calls wi'.hn a statement. 
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system functions to request suspension of code running In the corresponding segment; the 

value placed in the cell indicates the reason for suspension, and also identifies the statement(s) 

within the segment for which the synchronization request is intended. This latter value is 

necessary because we sometimes compile several statements into one segment. 

The initial instruction of code for each MISLE statement implements a synch test, which 

tests the corresponding synch cell for a non-iero value. If the test falls, execution of the body 

of the statement contmucv 

The second instruction of each statement is a routine call, or synch trap. This call is 

executed when the synch test succeeds. An argument to the call Is a structptr to the tree Tier 

node corresponding to the trapping statement. 

The synch routine, called by the synch trap Instruction, is a small procedure in the global 

environment of all COPILOT processes. If the synch cell value indicates that the trapping 

statement should actually trap (is not simply a "segment-mate" of the intended statement), the 

synch routine collects, the current process structptr (from a global variable), a structptr to the 

tree Tier node which identifies the procedure which trapped (from the current activation 

record, see Figure 8-8), the statement node structptr provided in the call, and the value of 

the synch variable. It then causes an event, whose value contains the collected information. 

The event is either a keyboard event, if the process is becoming inactive to allow the User 

loop to run, or a posting event, if the deactivation is due to a Stepp, Break, Suspend, 

Terminate, or data display request. Having caused the synchronization event, the process 

may suspend, depending on the reason for the trap. The following paragraphs treat each 

trapping reason in more detail 

I) When the user types a character which the User process needs to react to, the resulting 
machine interrupt triggers a small procedure in the global environment. This interrupt 
procedure sets the synch cell for the next statement to be executed in the RUNNING 
process; the currenf-segment machine register which allows intra-segment control 
transfers also allows this routine to find the right segment. The interrupt procedure 
then releases the interrupt, allowing the program to run to the next synch test, which 
must trap. The synch routine causes a keyboard event, but does not suspend the 
trapping process, which therefore goes from RUNNING to READY, in deference to the 
higher-priority User process. The User process awakens at Readallne (see Section 6.B1), 
where it had been waiting for a keyboard event. 
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2) The Stepp function operates by setting the synch cells for all possible successors to the 

chosen statement (its immediate successor, as well as the successors of all its 

substatements. if they leave the range of the chosen statement). It then activates the 

selected process. When that process traps at one of the successor statements, the trap 

routine causes a posting event and suspends the stepped process, which will not run 

again until some other process restarts it. 

3) A Break statement contains only the synch test and synch trap instructions. The synch 
cell for a segment containing a Break statement is always set, for the process selected by 

the argument to Break (all processes, if that argument is -I). Otherwise, a broken 

process behaves as a stepped one. 

4) Whenever a RUNNING or READY process is suspended by a Suspend or Terminate 
call, the process-suspension primitive causes a posting event. The subsequent behavior 
is quite similar to that for Stepp. The only difference is the reason code in the synch 

cell. 

We could eliminate the overhead of the synch test and trap operations by employing code- 

replacement techniques. We could temporarily replace the first instructions of a selected 

statement with a synch trap, then simulate their behavior when the process next ran. The 

trap instruction would be removed, and the originals replaced, when the trap condition no 

longer obtained. We are wary, however, of any technique which requires modification of the 

compiled code (t) for its operation, and have avoided it here. In Chapter 9 we will consider 

the extent to which specialized hardware can improve synchronization operations, 

eliminating the in-line instructions without code modification techniques. 

.1 

.1 

.1 

Figure 8-8 demonstrates the general structure of the code Tier. Code Items, whose datums 

are code segments, form the interface between the program code and program tree Tiers. 

Additional information in the datum of each statement node locates that statement within its 

(first) Segment This figure also sketches the storage organization for process data in the code 

Tier Each process uses a stick «sisy for storage of its activation records (frames) and 

temporary values. Each activation record contains a procedure node referent, and linki. to 

static and dynamic ancestors. This structure is dictated more by the requirements of the 

language than those of the IPS. 

Although we have drawn them as the lowest Tiers of a multi-Tiered structure, in reality all 

the data in the system, implementing all Tiers, reside in, or are accessed through, references 

(j) Except, of course, in response to changes in the source text. 
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in activation records of system processes within the code Tier. It is the special nature of this 

data, possessing references to information outside the normal lexical scope of the code 

possessing it, which allows us to circumvent control and environmental scope rules, in 

controlled fashion, to perform our complex IPS functions. 
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T 

149 

------ 



mmm mmmmm^^ wwnwmmmmmmmmm*mmm*mmmmmm .■■•VHW >P 

CODEv      70 TREES 
T^v LOCATE 
V^SEGMEMT 

SEGBASE 

FROft» | 
DYNA TRi^E, 

TO STACK BASE 

HEADER  INFORMATION 

bJ 
2 
u 
I- 
g 
V) 

SYNCH TEST, SKIP FALSE 

CALL SYNCH ROUTINE 

(INTERNAL JUMPS RELATIVE . 
V TO SEGBASE • 

TEST fCALL 
i 

(ARGUMENT IS STATEMENT ITEM) 

H 
Z 
Ui 
2 

\ 

-JUMPS  TO  OTHER 

SEGMENTS INDIRECT 
THROUGH HEADER 

ACTIVATION 
RECORD OF 
SPROUTED-»- 

PROCEDURE 

LOCATES 
STATEMENT 
^IN TREE 

y 
V! FROM BASE 

OF SPROUTED,/ 
PROCESS STACK 

EP 
IN CODE TIER_ 
(MAINTAINED 

IN  INDEX 
REGISTER) 

i 
I 

PROCESS DATA - - SAVED ID 
STATE, INTERVAL REGISTERS, 

WHILE SUSPENDED 

TO AR OF SPROUTER 

PROCESS ID IN DYNA TREE 

S1ATIC (LEXICAL) PARENT 

DYNAMIC  LINK =</) 

RETURN ADDRESS = ^ 

PARAMETER AND LOCAL 

PROCEDURE ID(NODE) IN PROG 

STATIC LINK 
ui 
III 
m 

DYNAMIC LINK —P»- 
o 
o RETURN ADDRESS 

PARAMETERS AND LOCALS 

PROCEDURE NODE ID 

ui 
UI 
(T 

< 
Z 
>- 
Q 

O 

I 

.1 

.i 

.i 

.i 

.! 

J 

j 

i 

.i 

D 
,1 

I 

Figur« 8-8. COPILOT Program and Data Code Tiers 

150 

mm am _^^^^^^^i-^-l^ito^ 1-'"'-'-a"— - - 



8D.  SELECTIVE EFFICIENCY 

I 
: 

D 
:: 

;: 

: 

i 

When IPS facilities are not active, we would like our target processes to run nearly as fast, 

and occupy nearly as little space, as they would if :he interactive facilities did not exist. This 

requirement discourages extensive interaction between our compiled code and other Tiers, 

either to maintain them or to gain information from them. Our description of the 

COPILOT code Tier has reflected this paucity of code-to-tree connections; references in the 

code Tier are restricted to tree node structptrs. in synch trap calling sequences, and In the 

activation records for procedures; the compiled code makes no use of them except in the 

synch routine sequences described in the previous section. 

We also have reason to minimize text Tier information; 

1) All text Scenes are subject to the same set of text-oriented editing operations. An 
abundance of structural connections to the more specific underlying Tiers could interfere 
with the implementation of these commands 

2) Displaying text is often a costly operation. In most display systems, such simple 
activities as moving the Scene window, or inserting a line require the regeneration and 
transfer of large amounts of information. The complexity of the Text Scenes cou'.d 
adversely affect this cost. 

The Token and Text Tiers, therefore, must provide the inter-Tier connections missing from 

the other two. 

Text 
I   A 
I   I 
i  I 

Token 

I 
▼ 

Tree 
I   T 
I   I 
v I 
Code 

Figure 8-9 Selective Connectivity 
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Wf pay for the selective efficiency we have gained in our outer Tiers with a corresponding 

loss m the inner ones, and in the operations which use and maintain these inner Tiers. tl 

Perhaps the greatest price is the increased difficulty of maintaining equivalence between the 

Tiers   As a running program modifies its environment (its data and control components), 

information in corresponding sections of higher Tiers becomes incorrect. When a snapshot is 

finally taken, updating these Tiers costs much more than constant maintenance would have 

cost  We present our maintenance methods below, in Section 8.E.   it) 

The interconnections between entities within the same Tier are also sparse for the outer 

Tiers No more links are maintained in the code Tier than are needed to support the 

operation of the code There is but one link per line in the text Tier Any outer Tier 

operation which requires additional structure can find the corresponding tree node, follow 

appropriate tree Tier links to the desired structure, then return to the corresponding point in 

the original Tier No power is lost; again, we sacrifice only time efficiency 

.! 

8.D1 Space Efficiency 

Figure 8-4. exhibiting the "cactus stack" nature of MISLE processes, is a logical diagram of 

the structure of the computer memory while COPILOT is running. A contiguous data stack 

is allocated for each process, then linkages are created to establish the connections needed for 

normal references to lexically available names, in the stack of the sprouting process. 

Additional references (not shown) in the stacks for IPS processes provide the structured 

references to elements in all stacks which are needed for the Tier implementations we have 

presented Program code figments possess a similar logical organization, although this is 

simplified because there is but one instance of the code for each procedure. 

While a target process runs, only its code, its stack and those of processes In its lexical scope, 

the structures accessed through these stacks, and the global system routines need be present in 

memory until that process next suspends We could accomplish this isolation in COPILOT 

by maintaining physical, as well as logical, separation of the code Tier segments from other 

elements of the system Although the current implementation does not do this, we have 

designed all our structures with this separation in mind Nowhere do we depend on physical 

proximity, of any pair of Tiers, or of the code segments for any pair of processes. 

(%) This analysis would almost certainly be different for an interpretive system. 
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Fortunately, th« hardware and operating systems of runy modern computers provide 

facilities for memory management, sharing, and protection which make it easy for us to 

implement this isolation. Figure 8-10 depicts the way in which the COPILOT 

implementation might be achieved in the MULTICS [43] system. Figure 8-11 is a 

possible solution for TENF,X [5], which runs on a modified PDF-10. Both provide, 

through their memory management policies, the complete withdrawal of recently unused 

pages of information to inexpensive secondary storage, enhancing the Target process's 

performance. (Both figures assume a familiarity with the memory management '«cillties of 

these systems). 

For systems whose memory structures are less sophisticated, the isolation properties can be 

simulated using either of these designs as a guide. 
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8.E.   PARSING AND COMPILING 

It is implicit in the COPILOT design that incremental changes to the text of programs must 

result in changes to the other Tiers. The translation, to be acceptably efficient, must mmimiie 

the replacement of information which is still correct; it must make corresponding incremental 

changes to the lower Tiers The Visual Fidelity Principle (Section 8.A3) determines the 

maximum allowable delay between changes to text and the initiation of the corresponding 

translations. We could perform them more often, but do not, since by waiting we are often 

able to simplify the translation, and to make more changes at once. 

We can not offer significant contributions to the incremental compilation area. We will, 

however, indicate the methods we have used in the COPILOT prototype, and hopefully 

reveal any insights we have gained in the process. 

8.EI Parsing Methods 

Lindstrom [35] defines an increment u a string of program elements (tokens) delimited by 

tokens from a distinguished increment set of terminal symbcis (eg, "Begin". "End", and ";"). 

He demonstrates that to limit parsing operations to the replacement of complete Increments, 

rather than arbitrarily chosen strings, considerably reduces the complexity of an incremental 

parser 

We suspect that most parsing methods would survive the modification to incremental 

operation Mitchell used a top-down approach, namely Tree-Meta [16]. Lindstrom, in a 

very promising approach to the subject, adapted the LR(k) algorithm of Knuth [30] for 

the purpose. We have chosen to use the variant of the Floyd-Evans production language 

parser (see references [22], [20], and [52]), which we developed for SAIL. Although 

we currently reparse and recompile only complete procedures, we believe that the flexibility of 

the production language technique would allow us to recreate a parse state which would 

accept less restrictive increments, and to merge the results into the old program trees. For the 

remainder of this section, we shall stipulate the existence of an adequate incremental parser 
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We consider Mitchell's thesis to be the most comprehensive on the subject of incremental 

compilation For additional treatments see [35], [36], [37], [53], [50], [28], and 
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and compiler, which can at least replace any sequence of complete statements, at the same 

block level. 

8.E2 Detection of Increments 

In order to identify which program increments need retranslation, we must keep track of text 

Scene changes as they occur. We must also relate these changes to the old program structure, 

for it is through study of the old structure that we can decide how to incorporate the new. 

Figure 8-12 depicts an extension to our token Tier structures, which allows us to maintain 

the needed update records. By following OLDLINE links, or NEXTLINE links whenever 

Ol DLINE links do not exist, we can recreate the original Scene. By following NEXTLINE 

links only, we obtain the current state of the Scene. There are no "'"oken lists for new lines, 

since I o token-scanning operations have yet been applied to them. 

We will define a suspect procedure as one which will need to be processed by the parser and 

compiler before it is next executed, because it may contain invalid trees and/or invalid code. 

For each set of changed lines, we must mark as suspect the tree node for the procedure 

containing the lines. Because they may be invalidated by the change, we must also mark as 

suspect all subprocedures of a suspect procedure. We attach to each suspect procedure a set of 

references to the changed areas within its body. This algorithm guarantees that all 

procedures containing changes will be marked, and will therefore not escape the eventual 

attention of the parser. 
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8.E3 Timing of Parse Events 

There are possible advantages to parsing new Text Scene changes as they occur. Perhaps 

the most evident is that we could detect errors quickly, and notify the user of their nature. 

Continuous parsing would also allow us to prompt the user, continuously disp'aylng the 

"menu" of legal successors to the last input (see, for instance, [24]). In addition, continuous 

parsing would make it easier to maintain tree equivalence. 

n 

We would  prefer to apply continuous pr.rsing methods.   Since the above problems are 

unsolved, however, we have not employed them. In.tead, we delay parsing operations as long 

as possible, parsing only when not doing so would mean executing obsolete code. This allows 

the parser to expect that program changes are grammatically complete and correct when it 

parses them, or to be justified in seeking human aid if they are not. 

Our methods for marking suspect procedures ensures that, if we operate the parser at the 

times specified in the following paragraphs, the system will never execute incorrect code, nor 

exa.Time any incorrect data during structured editing operations. 

The parser must be called: 

1) Whenever a process activates (whether sprouted or resumed) if the procedure to be run 

is suspect. This includes any change in state to RUNNING, from SUSPENDED, 

STEPPED, ..., or READY 

2) Whenever a procedure is called, if it is suspect. 

(«)  See, for instance, Lmdsfrom [35]. 
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There are also drawbacks to continuous parsing. The known methods for parking 

incomplete program fragments either place undue restrictions on program composition (the 

relationship between line and statement boundaries, conventions concerning line numbers, 

etc.), or could not cope with the COPILOT compiled-code environment. We could also 

expect the continuous operation to be far les; efficient, for not only must the routines for 

performing these translations be constantly active (incurring switching and "swapping" or 

"paging" overhead), but they must also maintain multiple parsing possibilities during the 

times when, because it is incomplete, the program is ambiguous. (*) 
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3) Whenever a jtructured editing operation is performed, if the procedure containing the 

indicated point is suspect (this covers operations which place the IP for a process into 

uncompiled regions). 

Since the compilation operations can only occur when no other processes are RUNNING, 

case (I) above should be sufficient to guarantee that no incorrect code will be executed. 

However, by adding case (2), we do not have to compile all changes each time, but need only 

ensure that everything which can be reached without either suspending, or calling a 

procedure, is correct. Thus, for example, UCP changes, required for the User loop operation, 

can be compiled without attempting the translation of change being made to other Scenes by 

these UCP statements • i 

Placing the compiler in the activation path between processes allows a simplification of the 

User algorithm. We may now remove the Compil step from line 3 of the program in Section 

6.B3, and from the corresponding lines of subsequent examples, since the compiler will put 

things right during the Stepp activation on the following line. 

8.E4 Process Structure 

We have chosen to implement the parsing algorithm as an independent process, with access 

to all system structures. This gives it a particularly clean interface between the system and 

target processes. This process, the Parse process, is nested in the same system block which 

owns the Post and UCP processes.  It runs at a priority between that of Posf and UCP. 

The Parse process, when not active, is suspended waiting for a parse event to occur. We can 

best consider what happens by considering the following cases; 

1) The User process inserts a statement into the UCP Scene, then executes Stepp. Stepp, 

while activating the UCP at the new statement, causes a p3,r$e event. Because of the 

User process's priority, no further action occurs until it again suspends at Readaline. 

Then the Parse process activates, preparing the new statement for execution before it, in 

turn, suspends and allows the UCP process to run. 

2) When a parse event is caused during a procedure call, or before a structured editing 
operation, the Parse process gams control immediately, due to its priority. Because of 

this event-driven operation, an instance of parser execution is invisible, except for a 

time-delay, to the normal control transfers between processes and procedures. 
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■■ 8.E5 The Parse Process 

p We will assume that, given a changed group of lines, our parser is capable of incrementally 

U translating them (perhaps combining these changes with other nearby or related changes.) 

Here we will outline our procedure for applying this parser to a particular instance.   The 

parameter to the parser is always the tree Tier node fof z suspect procedure. 

ii 

ii 

Q 
D 
; 

;: 

i 
T 

The parsing process: 

1) Examines, starting with the given procedure, all static ancestors (father first), yielding 
the outermost suspect procedure,  (t) 

2) Determines, using the old tree and token lists, in conjunction with the modified lines, a 
range of tokens and text to reparse. 

3) Performs the parsing operations in lexical order, so that declaration changes will occur 
before the statements affected by them are encountered, it) 

4) Deletes old Token lists and linkages as they become useless. For each replaced or 

deleted tree node, the parser deletes the tree structures, subnode structures, and code 
Segments for it. 

5) Invalidates (see [44]) those tree nodes whose code is now nonexistent or incorrect. 

The parser marks as invalid all new nodes, and all their lexical parents, terminating in 
each case with the outermost suspect procedure. 

6) Handles changes to block structure or declarations. This demands special treatment, 

since the effects of these changes are distributed over a range of program statements 

which might otherwise remain correct. Mitchell's design offers clear solutions to the 

problems which arise from declaration changes. For each detected identifier deletion, 
insertion, or attribute change, we mark as invalid any program tree node which uses 

that identifier We must also invalidate all the ancestors of an invalidated node, 
terminating at the block or procedure containing the innermost current declaration for 
the identifier Although we use the associative facilities of SAIL to perform this search, 
its operation is analogous to searching Mitchell's dependency lists for the modified 
entities. 

(t) Since all subprocedures of a suspect procedure are also suspect, this determines the 
maximum range of current changes which could possibly impair correct operation of the code up 
to the next procedure call or process rescheduling operation. 

it) This assumes that we require an identifier to be declared lexically ahead of its first use, 
even m a procedure nested within the same block. This is not a requirement of Algol 60. If we 
relax this restriction, the parsing job becomes somewhat more complex. 
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The parser must sometimes decide to recompile statements whose code is still correct. For 

mstance. since we only replace complete code segments, unchanged statements residing tn the 

same segment with a modified statement must also be recompiled. Unfortunately, not enough 

«nfoi mat.on about a statement remains in the pruned tree to allow the compiler to generate 

HPW code (see Section 8.C3). so we must arrange to recreate the full tree by ^parsing the 

token lists which specify it. This is not difficult, for we know both that the mcrement to be 

recompiled is syntactically correct, and that it already fits correctly into the surrounding 

structure. 

8.E6 Compiling: When and How 

We need not necessarily compile the incremental tree Tier changes as they are made, as long 

as the ultimate behavior satisfies the Visual Fidelity Principle. Previous systems have 

handled this in different ways The simplest are those, like most LISPs. which can either 

.nterpret or compile their functions, accommodating both forms in the same program 

environment. In these systems, the user chooses the compilation time for each function; the 

only operational effect of compiling is to enhance speed and siie characteristics. 

Mitchell's system compiles code at Me last possible moment, applying what he calls a Tree 

Factored Interpreter (TFI) to the tree structures (he parses changes immediately, on a line by 

line basis). A tree-structured interpreter, much like I ISP's, is applied recursively to the 

program tree. Each program node inherits the code compiled for its subnode;. then has 

instructions of its own added .0 the inherited code. The code for a node is executed just 

after it is created. Thus interpretation is factored into a control component, which follows 

the tree structures, and an execution/interpretation component, which interprets the algorithm 

(by compiling and running machine code) 

In Mitchell's system, nodes are validated by compilation, and invalidated during parsing, 

using the methods described above (Section 8.E5). When the interpreter returns to a still 

valid node, it can execute the previously compiled code. This policy, recursively applied, 

means that only truly incorrect code need be replaced. 

Mitchell's method requires IPS (interpreter) intervention at very frequent intervals, perhaps 

at every statement, even when executing correct code. We could perform last-mmute 

compilation in COPILOT by using synchronuation techniques, similar to those we have 
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described (see Section 8.C7), tc suspend in favor of compiler processes at the necessary 

intervals. 

However, if each transfer of process control caused minimum code recompilation, we could 

expect an inordinate, probably unacceptable amount of process-switching to occur after even 

minor changes. We could partially avoid these problems by making some reaionable 

decisions each time about how much to compile. 

At present, as we have seen, we restrict parsing events to times whose rarity would nullify any 

benefits of such selective and frequent compilation. In particular, we will seldom parse a 

change until just before the code It represents is scheduled for execution. We are therefore 

content to synchronize compilation with parsing events. After all changes have been parsed 

for the outermost suspect proce ure (which will by the preceding constructions be invalid) 

we apply a TFI compilation algorithm, similar to Mitchell's, to the updated parse tree for 

that procedure, without executing the code segments we compile.  (*) 

A final compilation task is to insert the resultant code segments into the code tier, and to 

correctly link these segments to the surrounding code 

8.E7 Modifying Active Code 

When the user (or any other agent) suspends ope-ition of a process, then modifies the 

program in a way which affects code in any active procedure within that process, to maintain 

correct program behavior requires special treatment The IP location might have to be 

repaired, for instance. If a procedure is changed so that it no longer calls some active 

procedure, or calls it fron a different place, the return label needs to be modified. 

Modifications to declarations often require substantial changes to the data environment. 

Mitchell discusses this problem at length in his thesis. He presents an algorithm, called 

REVERT, which can restore a legal state wheiever control transfers (by subroutine return, 

the only possible time) to a modified context. 

We   have  not  given  this matter the same exhaustive analysis  for  COPILOT.    In   the 

(*) Normally, Mitchell's TFI compilec onl" those nodes which it «ctually executes (for instance, it 
would compile only the selecter" alternative of an IF statement, leaving the other until it was 
selected.) He does provide modes, however, for compiling jll nodes in such constructs, when 
desired. This is the algorithm we are using. 
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prototype, the COPILOT user occasionally has to help reestablish a correct environment by 

direct editing of PROG, DATA, and DYNA Scenes. See Chapter 9 for thoughts on a more 

satisfactory facility. 

8.E8 CompiSing Temporary Statements 

Temporary   staiements.   when   ON.   are   functionally   indistinguishable   frr.r   any   other 

statements.   When OFF. they are equivalent to null statements: they Save no effect at all. 

Without the temporary statement facilities, the user could achieve most of the same effects by 

inserting conditional statement« at selected  program points.   These statements would  test 

variables used in place of our class identifiers, to determine whether or not to perform the 

operations. 

We demonstrated in Section 7.D3 that the enhanced syntax for temporary statements 

constitutes a user convenience. It can benefit efficiency, as well When a temporary statement 

is OFF, its code need not exist. The compiler can choose, while "in the vicinity", to delete any 

segments owned by inactive temporary statements. The expense of the recompilation 

required to turn such statements back ON Is offset by the ability to leave potentially useful 

debugging or monitoring statements permanently in a program, without execution cost. 
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CHAPTER 9 

SHORT SUBJECTS 

In this concluding chapter, wp wish to treat several topics 

1) Some   facilities   whose   descriptions   may   be   better   understood    In    light   of   the 

implementation information of Chapter 8 
2) Uriolved problems, some with partial solutions   We have mentioned most of these in 

previous chapters 
3) Possible extensions to COPILOT, made possible by the basic design 

The topics to be discussed do lot fall neatly into single categories of any of the attribute 

spectra we have distussed They are therefore simply presented as separate discussions, with 

no significance attached to their order of appearance 

9 A    ADDITIONAL COPILOT SUBJECTS 

9.Al User Programs in the System Environment- Assistant Procedures 

We have not mentioned this subject since Section 4.A3, when we briefly stated that the user 

could   write assistant  procedures to perform repetitive terminal operations  in   his stead, 

eliminating the need for a special "macro" facility 

We need neither additional structure nor additional commands to provide this ability The 

system skeleton of Figure 6-1, in fact, has a provision for such programs The aassistaiits 

entry in that example indicates where Scenes containing special user procedures can be 

placed, that Scene need not be called "assistants", nor is there a limit to one such Scene 

The global variables described in Chapter 7, which the terminal primitives use for their 

operations, form part of the environment of the assistant procedures It is therefore possible, 

by construction, for an assir nt procedure to do anything which the user ran do in a single 

terminal operation By combining several terminal primitives with normal language 

constructs- loops, conditionals, etc - one can achieve much more complex actions 

Typically, the user will directly execute an  assistant procedur;, by typing, for example. 
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"'PROC(pl. .pn)" The PROC call will execute in the UCP process environment. It should, 

like any UCP executed statement, be written to complete quickly, or invoke another process if 

the operation might take lo. ger than a few seconds 

The behavior of the system under sequential application of some primitives, particularly 

process-activation functions like Stepp, depends on the time intervals between successive calls, 

since an activated subprocess may or may not have suspended when called upon to do 

something else Although this condition is present in the operation of the Uier-UCP 

processes, effecting the interpretation of user "type-ahead" (t), it is particularly troublesome in 

assistant procedures   We will discuss the problem further in Section 9 B2 

... 

9.A2 Display of (unnamed) Expressions 

We have heretofore considered the display, in DATA Scenes, of named entities only (e.g.. 

variables) We would like to attach a meaning to the general data display statement which, 

in the syntax, allows us to select arbitrary expressions for display Our current solution is to 

treat such expressions specially, adding the computed value to the current variable data 

Scene, for one snapshot only, using the name "<temp>" to identify it Unless explicitly 

renewed, this entire entry cuappears during generation of the next snapshot 

A better solution (but much more expensive) would require that we attach to the data tree 

no^e for an expression's equation a reference to that expression's node in the program tree 

The expression would be re-evaluated, in the correct environment, during each snapshot 

update, until the proper environment no longer existed, or until the user explicitly deleted the 

equation from the Text Tier In this caie the text representation of the expression itself 

would be used to name it (eg, "A.F(JM - W"), so that multiple simultaneous expressions 

could be maintained 

Another data display feature is provided as a convenience The stepping (»X. »S) operations 

are useless unless the user can see something of the results of executing a stat'.-ment He can. 

of course, explicitly select variables for display. I ut the necessity to do this can be irritating, 

particularly in those cases when what he probably wants is clear A few situations are very 

clear   after stepping the execution of an assignment statement, one would like to know the 

.. 

(f) The presentation of rvew commands taster than they are processed 
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value of iny afftcted variables, or when execution suspends, just prior to execution of a FOR 

loop's controlled statement, the value of the continuing variable U     irly always of interest. 

The Post process spontaneously adds variables ro the appropriate data Scene, whenever a 

process suspends after "stepping" a statement which changed but one variable The variable 

is not, however, marked for continuous display The effect is to display this variable during 

one snapshot only, unless data display statements nave previously selected it. 

We could extend this facility to more complex statements (e.g., complete blocks or compound 

statements), but we would, in each case, have to balance the added visual context this 

achieves against the danger of flooding the data Scene with too much information. 

n 

■■ 
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9.A3 Operations on the UCP Scene 

Since the User and UCP Scenes are ordinary Scenes, they should submit to user modification 

through text-editing operations, particularly because such modifications could be quite useful, 

permitting the user to tailor his system However, in practice, such operations could yield 

unpredictable results, some of which are detailed below We must therefore place limits on 

what can be done, in order to protect the integrity of the system We would also like to 

provide alternate facilities with equivalent power 

Any IPS which treats either the programs implementing the system or the history of user 

commands as user-accessible entries must tackle these same problems Teitelmar. encountered 

some of (hem while implementing his BBN-Lisp facilities, he gives a lucid description of the 

results in [55] We share with him the belief that many of these operations are useful 

enough that we should not prohibit them entirely We have therefore introduced the 

following restrictions 

1) We will permit no direct changes to the programs implementing the User loop, the Post 

process, or the parser/compiler processes (but see Section 9C3 for ways to obtain the 
same effect) This preserves the integrity of the basic system operation 

2) We will permit no changes to the UCP Scene which alter the basic outer structure (that 
of a procedure whose body is a compound statement) In addition, we will allow no 
insertions of text into the UCP Scene below the current IP for that Scene, except by the 
User process 

3) Only the User process may control the activation of the UCP process, or th- placement 
of its IP 
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These latter requirements assure that the normal, sequential application of user commands 

will not be impeded by user modifications to the UCP. 

Let us briefly consider what the user might want to ach^ve by direct operations on the UCP 

Scene Perhaps most obvious, and most difficult to achieve in light of the above restrictions, 

is repetition of previous commands A conceptually easy way to achieve this would be to 

map the UCP Scene to a visible Region, to point the edit cursor at a previous statement, and 

to single-step the execution of that statement To re-execute a series of commands. ( ne would 

surround a range of previous statements by BEGIN - END bracket:, and step the execution 

of the resulting compound statement 

The problem with this technique is restriction (3) above, the IP-modification and STEPP 

operations implied by the above scenario are not allowed- to allow them would destroy the 

integrity of our interactive control The solution is quite simple: it costs little to create an 

additional process, which we might call UCPI, as another nstance of the UCP procedure. 

As a separate process. UCPI possesses an independent executior. state (1P.EP). its operation 

will not interfere with the operation of the UCP process. Process control operations on 

UCPI may be performed in a manner no different from the control of any other process. 

For convenience, we may devise explicit commands for the most common UCPI transactions. 

An example would be a command whose effect is similar to Teitelman's redo operation it). 

repeating the action of a very recent statement 

The UCP Scene is a rich source of material for constructing assistant procedures, as well. 

Text-copying operations, which we have not shown, make this job easy. By embedding 

selected UCP statements within conditional and repetitive statements, a user can create quite 

sophisticated sequences As an example, having constructed and executed a sequence of 

commands to test the performance of a new procedure, he could create an assistant procedure 

to perform the same sequence, for a range of parameter values, using the sta^ments from the 

UCP to avoid reconstruction of the repeated text One could, similarly, create another 

assistant procedure to perform a complex sequence of text editing operations, then apply it to 

a range of lines 

:. 

., 

it)    st«    [53]   or    [55] 
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9B    PROBLEMS 

9.B1 A UCP Scene Problem 

If we use algorithm A. B. or C of Chapter 6. the UCP Scene will contain a complete record 

of recent terminal commands However, algorithm D, which introduces the notion of 

selective interpretation, also introduces a potential problem In algorithm D it is not always 

necessaiy to insert a statement string into the UCP in order to achieve that statement's effect; 

that statement may instead be executed dir^tly. The UCP history will therefore be 

incomplete, rendering impossible automatic duplication of recent actions. A safe, although 

expensive, solution :s to insert each expansion into the UCP Scene whether it is used or not. 

We could often increase efficiency by summarizing in the UCP Scene a sequence of actions 

(for instance, cursor-moving operations) by a smaller number of statements. appropri?.tely 

parameterized   We do not have a more satisfactory solution to this problem. 

9.B2 Type Ahead Problems 

In Section 6.B3 we discovered a drawback to the decoupled control achieved in the 

User/UCP design execution of one command will supersede that of a previous one if it is 

typed before that previous command completes operation This behavior is necessary if we 

are to etain non-pre#mptive control over errant UCP statements. However, it is not the only 

possible treatment of type-ahead   Ojr cilices are 

1) To cause new statements to supersede old ones, as above 

2) To ignjre statements completed while the UCP is active 

3) To qutue new statements behind the executing ones, suspending the UCP only when 

none remain to run (the normal behavior of Stepp when applied to a process which is 
already stepping ) 

We must immediately reject (2) as a solution, because ir is completely unresponsive to the 

user's n.-eds When affairs are progressing normally, in fact, (3) is the proper course, 

performing all user commands in order Finally, as we have stated, we need to be able to 

obtain the behavior of method (I) 

No one has ever, to our knowledge, successfully resolved this conflict between the desire to be 

able to type ahead, and the desire to bo able to abort previous operations   We can offer no 
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complete solution here, but can at least offer a method which makes both the above 

acceptable methods explicitly possible. To do it, we have further modified the User 

algorithm, dividing the set of terminal commands into two classes. Each kind is expanded, 

inserted, and compiled as usual When the UCP is inactive, both kinds behave identically. 

When it is active, however, there is a type-ahead SI:I ation. For elements of one class, we 

apply method (3), queueing the statements for eventual execution. We do it by bypassing the 

suspend statement of Algorithm C in Section 6.B3. Elements of the other we arrange to 

execute immediately, using method (I). We can now remove most of the commands of 

Chapter 7 from this latter, imniediate, class and place them into the more orderly queued 

class. 

9.B3 Data Scene Flickering 

We mentioned this problem before, in Section 5HI It does not arise when we are 

examining the state of a suspended process, either looking at previously selected values, or 

adding new ones via directly entered data display statements However, consider a visible 

DATA Scene, D, which is monitoring a running process, P, where P's code contains several 

data display statements It is possible that these statements are being executed often, 

generating a large number of snapshots in a short time In this case, the value field for the 

equation of a displayed variable which is changing between each snapshot will become an 

unreadable blur (hopefully, otherwise the system is not fast enough) We are not concerned 

by this, though, for that blur is in itself useful information 

170 

.i 

D Heretofore we have really needed only one command (V<statement $tring><cr>M) to perform 

any terminal operation: all others could be defined in terms of this one. Let us place this 

command into the queued c v,5. We now need a command which will execute a statement 

immediately: let us use "•?<statemen': $tring><cr>" for that one. To abort the current UCP 

operation, the user need type only "•?<cr>", which instantly terminates the current UCP 

statement in order to execute the null statement. To suspend all non-system processes 

immediately (a good idea in a crisis), one could type "•?SUSPALL()<cr>H
1 or. ideally, a 

specially-designed CALL key which would expand to "SUSPALLO" 

Having executed an immediate command, one could retry any or all of the interrupted 

statements using redo or something like it. 

.. 

, 
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However, if these data display statements are scattered among several procedures, all defined 

within P and alternately called from within it. a far more serious "flicker" develops within D. 

It occurs because the variables for ;wo disjoint procedures cannot appear simultaneously 

within D, even if both are simultaneously active. Even worse, if no action is taken to prevent 

it, the equations for each will alto-'ately occupy the same positions within the Scene. If these 

transitions occur frequently enough, the result is not only chaotic, but unmterpretable. 

If the user has enough display area, he can minimue this problem by creating several fixed 

Scenes (see Section 5HI), thus distributing the equations to fixed positions. With the 

relaxation of the snapshot requirement which we described .1 that section, these Scenes 

shouhi be fairly well behaved However, we have no general soiu'.on to the problem, when 

it appears in the variable Scenes Its effect could be reduced if tne Post process were to apply 

heuristic guides to the placement of equations within variable Scenes. 

:: 

:: 

9.B4 Data Monitoring 

Data monitoring, or tracing, operations have always been a popular method of program 

debugging For interactive systems, such a facility usually allows one to select a set of 

variables to monitor, specifying for each whether he is interested in every reference to it, or is 

only interested in store operations which change its value. The occurrence of such an event 

can cause the current value to be printed or displayed, can cause a "program break", or can 

invoke some user-specified action. 

We may distinguish between facilities provided by translators (eg, compilers), and those 

provided by the "virtual machine": the hardware and the IPS software We have 

concentrated most of our efforts on the latter, assuming as well that we can control only the 

IPS software The structure of the virtual machine determines the category into which 

continuous monitoring operations fall If the hardware provides a way to interrupt when 

selected events occur to selected memory locations, or if the system is interpreter-based, 

monitoring may be handled as an IPS facility. Otherwise it is something which must be 

handled by the translator In COPILOT, this would involve the recompilation of large 

amounts of code v henever the monitoring attribute changed for a given variable We feel 

that, although we must accommodate explicit changes to identlf.er declarations, any other 

facility which requires for its operation such widespread replacement of program code is 

unacceptably inefficient. ar>d should be avoided   The implementor willing to pay this price 
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could do so, by treating inonitoring as a declaration attribute, and by depending on the 

Incremental compiler to lind and replace the necessary references 

If our hardware possessed the ability to monitor individual variables, genera.ing an interrupt 

or simulating a procedure call whenever one of them changed, our atUiude would be much 

different Monitoring would become an PS facility, well within our domain Our data 

display algorithm would respond readily to the netded modifications for displaying 

contmously correct data values; and the process/event structures could provide more 

sophisticated monitoring operations, including the so-called "continuously evaluating 

expression"  discussed  by  Kay [28] and  Fisher [21] 

The synch test and synch trap calls used to effect our process-control primitives are also 

translator-dependent, so our avoidance of such facilities is not completely consistent. In this 

case, since we always general this synch code, massive changes need not be made to install 

and remove it CM occasion. We have had to accept the additional overhead this method 

causes as unavoidable Again, the addition of hardware memory facilities, which would 

generate the appropriate exception conditions when control passed to selected instructions, 

would virtually eliminate the synchronization overhead. 

Several machines possess adequate memory monitoring facilities for a hardware 

implementation of these features 

9.B5 Restoration of Active Context 

This is the problem of restoring the control and data environment of an active procedure, 

after its algorithm has been changed We mention it here for completeness We have 

already described the problem and our progress in this area in Section 8E7; that solutions 

exist for similar systems, but we have not yet succeeded in applying them to COPILOT. 

Ü 
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9C    EXTENSIONS 

I 

9.CI Environment Modification by DYNA Sceiif Editing 

We have demonstrated the usefulness of structured pointing operations, applied to all the 

context Scenes, for selecting and communicating environmei.tal information. We have 

similarly shown that one can modify this environment by suitable modifications to profram 

and data Scenes. We would like to consider here what we could accomplish by allowing 

controlled modification to the dynamic Scene 

We would, as usual, limit the kinds of operations wf would allow Any changes which did 

nor make sense would be repaired, perhaps by ignoring the changes For this reason, the 

user would usually choose to "have the system make them", by calling specific primitives (e.g., 

Sprout), rather than use the general editing facilities, which would remain available for 

activities unanticipated by the designers 

We would provide a translator which would reflect, in the lower Tiers, controlled dynamic 

Scene changes of the following nature 

1) By deleting entries in the dynamic Scene one could "unwind the stack" of a process, 
perhaps returning the environment to an earlier state, or removing intermediate 

procedure instances (whatever that might mean) 

2) ' adding legal procedure instances, one could insert omitted procedure calls into the 

Mve environment, after correcting the omission in the code, or he could construct test 

environments ^ee also Section &D4) Default values would be assumed for variables in 
the new activation records, until explicitly overridden by additional user or program 

operations 

?) Mo-e importantly, by specifying that an entire process branch be copied, suitably 
renamed, and inserted into the dynamic tree, one could accomplish a sort of a posteriori 
process sprouting Such a duplication could be useful when uebuggmg, since it would 

implement what amounts to a checkpoint to which one could later return One would 
run one of the duplicates for a while, then either terminate it and run the other 

(possibly modified) one, or terminate the second process if the first were successful. This 

is a facility similar to the one proposed by Lindstrom in [35] 

4) Similarly (for symmetry) one could delete an entire process branch in the dyna tree, thus 
terminating the process Directly terminating the process (using the Terminate primitive) 

would have the same effect 
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9.C2 Scene Branching 

in the COPILOT system as defined in chapters 5 through 7, there is but one copy, within 

ti:h Tier, of the code for any given program segment; thus, the user need never perform 

leduiidanl modifications, nur is there danger that changes will be left out of the "permanent" 

copy of the program text («) There u, however, a danger that he will make a change to the 

text which is difficult to reverse, especially during early development Let us consider some 

of the kinds of things one would like to do during these early stages 

(«; The token Tier is the permanent representation of his programs.   It is retained when the 
user is not "logged in", eliminating the need for separate "source files". 
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1) Try out proposed changes, without committing himself to them; try out several different 
versions of the same change 

2) Add new, independent program segments individually, eliminating any possibility of 
interference by other untested elements. 

?)     Merge several independent changes after each has been tested, resolving any conflicts 
between them »I 

We already possess the means for ^-'atmg a section of program for independen: 

consideration: the nes:ed program Scene The user can accomplish something similar to the 

operations in the above list, using the existing facilities By copying a Scene's data into a 

new Scene, making the necessary modifications, and replacing the •<scene> reference which 

includes it in the program, he can achieve the redundancy needed for all the above 

capabilities 

We could significantly increase the convenience and efficiency of these operations, however, if 

we were to extend the syntax for Scenes and Scene references to include something like Scene 

arrays, whose interpretation is shown in Figure 9-1. By editing SUPERSCN, or by 

executing a special command, the user could switch alternatives at will. The major benefits 

to this approach could be derived from proper implementation For instance, all elements of 

uiie Scene array could share common token, tree, and code Tier representations (see 9-2 and 

9-3) where possible, diverging only where they differed. The currently selected index (in 

the Scene link) would determine the accessible code segment.' for each divergent program 

increment The data structures required for the other features would make the merger 

operations (item 3, above) quite simple As a final example, because they would be 

inexpensive, one could retain several old "versions" of each Scene, for documentation or 

safety purposes. 
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SUPERSCN 

PROCEDURE SRCH; 
BEGIN 

Figure 9-1. User's View of Scene Branching 
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SCN[«]ITEM 

TOKEN TIER 

.1 

.1 

0 

BEGIN' 

CONNECTIONS TO 
TOKEN TIER, ETC. 

TREE  TIER 

/ 

CONNECTION TO CODL TIER, ETC. 
\ 

Figure 9-2. Efficient Scene Brandling linpleinentation (Token. Tree) 
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Figure 9-3. Efficient Scene Branching Iniplemenution (Code) 
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9.C3 Modifying the User Loop 

We have explicitly forbidden direct changes to the code implementing the User loop, and 

other critical system processes. We do not mean to prevent the user from designing his own; 

we simply want to ensure that the transition to a new algorithm is orderly and correct. We 

have already described an alternative for manipulations of the UCP, in Section 9.A3. The 

branching facility just described could be used to allow User loop modification. If the "«user" 

Scene link in Figure 6-1 were instead a link to an element of an array of User Scenes, the 

user could create a new element of this array, copy the old User algorithm to it, and make 

selected modifications. He would then call a special system primitive to switch from tie old 

algorithm to the new, within the same User process, or, alternately, to create a new process 

and switch keyboard control to it. 

We could also provide new primitives for customizing the User loop command structure bv 

changing, adding, or deleting the expansion strings for selected commana characters. 

9.C4 Display of Structured Data 

Current data Scenes can manage only scalar values. Thus, while it is possible to present 

single array elements in a 'lata Scene, we cannot display an enure array, or selected rows and 

columns from an array. More complex structures (e.g., LEAP associations), are equally 

unmanagt ble in data Scenes. 

We have already shown the benefits of a nested Scene structure for program Scenes. A 

similar approach could solve these data display problems. First, we would design a format 

for the particular kind of code Tier structure to be displayed. Then we would compose 

functions to create a text Scene, of a newly generated type, from the code Tier data for that 

structure- we might create intermediate Tiers as well. 

Finally, we would add to the syntax for data language "programs" the productions: 

<equation> ;:■ • <scene id> 

<data comment>   • <comment> 

.! 

.i 

.1 

] 

] 

.; 

:: 

.i 

We would also extend the data display statement syntax to include structure statements such 

178 

«fei 



w*~*^*m**i^m*^**^* mm*- mm*i**™*mm***immmmF ■ u< ■ "i'.1'   'i » • 

I 
I 
I 
1 
i 
: 

: 

:: 

Q 

: 

:; 

:; 

D 
:. 

:: 

1 

as "A", where A is a three dimensional array. "AO,*.*]", or, in SAIL, "SON«?i?M. The first 

would display the entire array, A The second would show just the rows and columns of 

"layer 3" of A. The third statement would present all those item (t) pairs related to each 

other by the SON attribute (father/son pairs) 

To satisfy one of these requests, the system would create the appropriate structured Scene, 

map it to a selected Region, and insert a "»scenejd" entry, referring to this new Scene, into a 

selected data Scene We would include with the entry a "data comment", bearing the original 

data display statement, to allow the user to identify the reference. Figure 9-4 is an example 

of this design for the partial array A[3,;v:0 Examples of possible display formats for SAIL 

associative structures abound in the figures of Chapter 8, for examole. Figure 8-6. 

We could extend this method to any of the basic, explicit structures of MISLE, of SAIL, or 

of virtually any programming language. There is. however, a limit to the comprehensiveness 

we could provide this way A u:er, when developing d'ta structures for a specific use. must 

use the provisions of the language to create them. The result need not resemblr very closely 

the structure as he visualizes it. This is true even for extensible languages, such as ECL. 

Lisp70, or Algol68, in which the user tells the system a great deal about the structural 

hierarchies he creates- although we might expect to do a good deal better in these cases. In 

the past, as now, the burden for creating any custom-tailored external representation for 

structures has been on the user himself. In the present COPILOT system oui text Scene 

primitives can offer some aid, but a method is still needed for specifying the external 

representation of user-defined structures. Ball*, has done some work in this area (see [2]). 

as has Hansen (see [24]) Yonke, at Utah, is engaged in a promising study which could 

provide the needed facilities 

(f) See Appendix B for a description of the LEAP associative features. 
179 
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Figure 9-4. Possible Scene for Displaying Array Sections 
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9.C5 Error Messages 

We could use the non-preemptive nature of COPILOT to take the sting out of error 

messages, translation and execution-time errors detected by the system, or user-detected errors. 

1 o see how, we need to consider the nature of errors in a multiple-process environment. The 

effect of an error, in general, is to place conditions on the further activities of some process, 

but not necessarily to prohibit them entirely. As an example, the detection of a syntactic or 

semantic error during program translation need not, fortunately, prohibit further modification 

to the Scene text, although it might, for a serious problem, prevent execution of the resultant 

compileJ code. 

In many cases, then, we can replace the notion of "error" with that of "incompletion". A 

'ranslation process can maintain, in an appropriate Scene, a list of things which must be 

done in order to remove all the constraints that have been placed on a situation. In our 

compiling example, the parser and compiler could maintain in an error Scene a list of the 

program Scene locations which contain incomplete or incorrp.i code. Underlying error Scene 

Tiers could, as usual, provide structure, linking the error entries to the errant locales in the 

program tree This list, besides telling the user what problems remained, could help the 

translator to interpret the meaning of new changes in these locations. The important thing 

about this technique is its potential kindness, it is non-pre*mptive, and it could provide 

substantial aid to the person attempting to rectify the situation. 

9.C6 Text Scene Monitoring 

We have described the control mechanisms for most of the translators which convert one 

COPILOT Tier to another. We have omitted the one which builds the OLDLINE and 

NEXTLINE structures of Figure 8-12 in Section 8.E2, when PROG Scenes are modified. 

The current method is ad hoc, and not very interesting. We make special tests in the Scene 

modification routines, for selected Scene types, and take special action when they are found 

While designing translators between other Tiers, we have discovered the efficacy of building 

these translators as processes which monitor changes in their respective source Tiers. These 

processes awaken at convenient and adequate intervals to perform their specified translations 

We subsequently developed the following generalization, whi'h could handle the program 

Scene maintenance case above, as well as other useful translations, some of which we will 

consider 
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In each case, the goal would be to provide a translation algorithm which would maintain the 

equivalence, as defined in Section 8.A1. of two or more structures, in order to satisfy a 

requirement such as the Visual Fidelity Principle of S<rction 8.A3. Each translator would be 

defined as a process with access to the data for its input Tier, and access to a suitable 

destination T:?r. Its frequency of operation and translation volume would depend on the 

conditions for invoking it. Each translator would specify these conditions by providing two 

quantities as attributes of the input Scene type. They would provide an activation 

predicate, which would determine the conditions for invoking the translation, and an event 

type to cause whenever the predicate succeeded. The Scene modification primitives (e.g., 

Mchaige.char(...)") would evaluate the predicate for a Scene just after modifying the Scene. 

This predicate could choose to activate its translator process: 

a) On insertion, deletion, or replacement of a character in the Scene. 

b) On insertion, deletion, or replacement of a line in the Scene. 

c) On insertion of a character at the end of the Scene. 

d) On insertion of a line at ihe end of the Scene. 

The activation predi^ce could abo contain other Boolean terms, testing such attributes as the 

name of the process doing the modification, and perhaps relevant Scene attributes, type, 

mapped status etc. 

The translation process would then wait (monitor) for an event of the type specified for the 

Scene, activ atmg as soon after one occurred as its priority would allow (usually immediately). 

It would perform its actions, then suspend, awaiting another event. One proress might 

handle more than one event type. 

We will try in the following paragraphs to clarify this design with several examples. 

The parse and compile processes form our first example, since they already operate this way. 

As a second example, we could formalize the ad hoc operations which implement the Token 

Tier change structures for PROG and DATA Scenes by a simple process causing, say. a 

Token event whenever a type (b) or (a) change were made to a program or data Scene. (*) 

I 
3 
I 

I 
I 

1 
: 

i 
] 
:i 
3 
] 
:; 

it) Combined with the compiler processes which lurk about the process activation interfaces, 
the resulting system would resemble Kay's FLEX system design. Here the monitoring has a 
random-access character, whereas Kay's processes operate linearly on their inputs. 
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9.C7 Program Comiiiunication 

Scene monitoring can also aid user-program communication^. We can categorize the kinds ot 

demands for data which programs make of their user: into two general classes. The first 

includes initial parameters, file names, !;mit$, modes of operation and the like, which the user 

provides to tailor the program for a particular "run". The second Is information actually 

processed by the program, e.g., commands and requests, statements to be translated, or data 

points to be considered. 

Our interactive facilit:»« 'lave ilready eliminated the need for a third kind of user input to 

programs: status and variable value requests, and many other debugging operations. We 

think we have substantially reduced the need for the first kind (initialization), as well. After 

all, the purpose of most such parameter requests is to set internal program variables to the 

values provided, or perhaps to retain default values when the user's response so indicates. 

Typically the user, in testing his program, will give the same responses again and again, an 

operation which becomes something of a ritual after a time. We can eliminate this sort of 

request in COPILOT, since the ^scr can set these internal variables using direct assignments 

or function calls, often all-wing his selections to remain intact during multiple calls to the 

tested program segment. His program can post, in a visible Text Scene, the names and 

meanings of variables which it expects the user to set, or can simply create and present an 

appropriate data Scene as an Indication of what things he may want to change. That process 

can further refuse to proceed until the user has provided satisfactory values for everything. 

There will still, however, be occasions for more traditional input to programs (predominantly 

the second kind above). In this case, the general mciitoring facilities of the previous section 

yield a very Mte solution. The user could, for instance, engage in the following kinds of 

dialogue with his program: 

• • 
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characters into a linear tenniial Scene. It could optionally perform simple editing 

operations, allowing for deletion and replacement of incorrectly typed characters, etc., 

depending on the Scene mon.toring frequency (see below). This terminal Scene would serve 

merely as an input buffer, and operations upon it would be limited. We would implement it 

as a Scene, so that the normal COPILOT operations could be used to view it, react to what 

happened to it, and change it. 

We could now create a process. Expand, to monitor changes in the terminal Scene, and to 

translate them either into direct action, pr into complete statements in the UCP Scene for 

execution. By alternating between activation frequencies (c) and (d) of Section 9.C6, the 

Expand process could allow the User process the simple editing capabilities, mentioned 

above, whenever single-character reaction was unnecessary. 

The ultimate behavior of these processes would not be too different from those of Chapter 6, 

but the overall organization would become clearer, and potentially more powerful. In fact, 

some useful extensions almost suggest themselves: 

We need not limit to one the number of processes monitoring a Scene. We could, therefore, 

add a Prompting process, at the user's option, to help the novice or infrequent user with his 

commands The prompter could complete commands, as described in Section 9.C7, and insert 

directives into the terminal Scene, as a guide to the user's responses, or to point out potential 

mistakes. 

'" 

:: 

i - 

The monitor process structure would also make multiple-language systems possible: The 

expansion and compiling processes could be replaced in a modulai fashion, so that any 

aspect- the terminal "language", or the underlying base language- could be changed, without 

altering basic system behavior.  (We do not mean to imply that this task would be easy). 

We feel that the monitoring technique dominating the preceding sections, though requiring 

additional research, would help achieve a desirable system unity. 
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9.D.  SUMMARY 

We have presented the COPILOT system design in order to Investigate certain aspects of 

Interactive Programming Systems in a multiple processing environment. Our major 

approaches have been; 

1) The application of multiple processing techniques to the IPS facilities t.iemselves, 
leading to a non-preftnptive terminal operation, with convenient access to all relevant 
environments, and rapid response to user commands, independent of the activity of his 
target processes. 

2) The use of (CRT) display devices, to increase the speed with which the system and user 
i.iay communicate, and to allow information to be presented "in context", improving the 
user's ability both to comprehend complex environments and to specify points of interest 
within them. 

3) The expression of all user algorithms and terminal commands in terms of a single 
programming language, providing a consistent, powerful user interface, and reducing 
the number of modes w'.uch determine the meaning of user input. Top-level 
abbreviation facilities allow the most common operations to become manipulative, reflex 
actions, rather than symbolic commands. 

In Chapters 5 through 7 we described the COPILOT rystem, which employ these methods to 

meet the criteria of Chapter 2 for achieving a better behavior match. 

Finally, in these dosing sections, we have attempted to indicate possible implications of this 

work, especially the potential for extension, using our methods as a basis. 
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In Chapter 8 we discussed important implementation considerations: the content and 

structure of information used to represent fhe system environment at different levels (Tiers), 

and the methods for maintaining the necessary relationships (or equivalence) between Tiers. 
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APPENDIX A 

SYNTAX CONVENTIONS 

This appendix defines the modified BNF syntactic forms used to describe the MISLE 

language and the Data layout in Chapter 5. It assumes a general knowledge of BNF, as 

defined  in [46], for instance. 

Nonterminal symbols are expressed as lower case words surrounded by "<" and ">", e.g., 
n<statement>H. 

Terminal symbols include punctuation: single characters or "diphthongs" defining themselves; 

reserved words: BEGIN, END, ELSE, etc.; and the special nonterminal-like symbols <id>, 

<string constants <constant>, and <integer_constant>. 

The character '"" causes the following character to be interpreted literally, if it would 

otherwise have special meaning 

Each rule, or production, is a nonterminal, followed by the definer "::-", then by one or more 

alternatives, separated by the "I" character. An alternative is a list of terminal and 

nonterminal symbols, or is an option or a repeat alternative. 

An option, of the form [ <alternative> | <al...> | ... | <al...> ] requires that one of the 

alternatives be chosen. The repeat alternative takes the form { <alternative> }>:< , and means 

that instances of the alternative may appear zero or more times; 

<c> ::■ A { , B }■;■ is the same as <c> ::- A | <c> , B 
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Expressed in its own language, this syntactic specification is: 

Terminals;     '[  '] "{  > '"-   NONTERM  TERM 

where NONTERM and TERM represent nonterminais, as defined above. 

.production:»   ::-  NONTERM '::■ <alternative> { , <alternative> )« 

<alternative> ::■   <eiement>   j <.element> }: 

<element>      ::■  TERM | NONTERM | <optiün> | <repeat> 

^üption>       ::-  '[ <alternative> {'| <alternative> }■;■'] 

<repeat>       ::■ '{  <alternative> > 
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APPENDIX B 

ASSOCIATIVE FACILITIES (LEAP) OF THE SAIL LANGUAGE 

We have represented many of our COPILOT structures in terms of the LEAP associative 

facilities embedded in SAIL. The structural diagrams of chapters 8 and 9 were presented in 

a consistent pictorial style, representing these LEAP structures. 

We will first briefly describe SAIL's associative facilities. Following that we will provide a 

correspondence between the SAIL structures and our pictorial representations. 

The LEAP description has been extracted from [19], with the permission of the other 

authors: 

SAIL contains an associative data system called LEAP which is used for 

symbolic computations, LEAP is a combination of syntax and runtime 

subroutines for handling items, sets of items and associations. 

Items 

An Item is similar to a LISP atom. Items may be declared or obtained during 

execution from a pool of items by using the function NEW. Items may be stored 

in variables (Itemvars), be members of sets, be elements of lists, or be associated 

together to form triples (associations) within the associative store. 

Triples 

Triples are ordered threejuples of items, and may themselves be considered 

items and occur in subsequent associations. They are added to the associative 

store by executing MAKE statements.  For example; 

MAKE use ® planl • taskl; 

The three item comp ients of an association are refered to a;, the "attribute", the 

"object", anü the vabe" respectively. Associations may be removed from the 

store by using ERASE statements such as. 
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ERASE use» plan l • ANY; 

Datums 

Each item other than those representing associations may have a Datum which 

is a scalar or array of any SAIL data-type. The data-type of a DATUM may be 

checked during execution.   DATUMs are used much  as variables are.   For 

example: 

u 
Ü 

1 

., 

J 

DATUM(it).-5; 

would cause the datum of the item "it" to be replaced with "5" 

Sets and Lists 

A Set is an unordered collection of distinct items. Items may be inserted into set 

variables by "PUT" statements and removed from set variables by "REMOVE" 

statements. Set expressions may also be assigned to set variables. Set 

exptessions including set constants, set functions, set union, subtraction and 

intersection are provided 

Sets are deficient in some applications because they are unordered. To remedy 

this, SAIL contains a data-type called "list". A List is a (user)-ordered sequence 

of items. An item may appear more than once within a list. List operations 

include inserting and removing «pecific items from a list variable by indexed 

PUT and REMOVE statements. List variables may also be assigned list 

expressions, including list constants, list functions, concatenation, and sublists. 

Foreach Statements 

The standard way of searching the LEAP associative store is the Foreach 

Statement. A Foreach Statement specifies a "binding list" of itemvars to be 

assigned values (bindings), an "associative context" specifying how the r'.ata 

structure is to be searched to provide these bindings, and a statement to be 

lepeated for each set of binding values.  Consider the following example: 
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FOR EACH gp,p.c | parent • c ■ p A parent • p • gp DO 

MAKE grandparent • c • gp; 

In this example the binding-list consists of the itemvars "gp", "p", "c". The 

associative context consists of two "elements", "parent • c ■ p". and "parent • p • 

gp".  The statement to be iterated is the MAKE statement. 

Initially all three itemvars are "unbound". That is, they are considered to have 

no item value. Since "p" and "c" are unbound, the element "parent • c * p" 

represents an associative search. The LEAP interpreter is instructed to look for 

triples containing "parent" as their attribute. On finding such a triple, the 

interpreter assigns the object and value components to "c" and "p" respectively. 

We continue to the next element "parent • p * gp". In this element there is only 

one unbound itemvar, "gp" "p" is not unbound even though it is in the binding 

list because it was bound by a preceding element. A search is made for triples 

with "parent" as their attribute and the current binding for "p" as their object. 

If such a triple s found, its value component is bound to "gp" and the MAKE 

statement is executed. After execution of the MAKE statement, the LEAP 

interpreter will "back up" and attempt to find another bidding for "gp" and then 

execute the MAKE statement again. When the inteijjreter fails to find another 

binding, it backs up to the preceding element and trys to find other bindings for 

"p" and "c". Finally when all triples matching the pattern of the first element 

have been tried, the execution of the FOREACH statement is complete. 
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Thus, with a FOREACH statement, one can provide answers to the following kinds of 

questions (SON. HARRY, and GEORGE are already bound Items): 

SON »HARRY■GEORGE 
SON «HARRY • ? 

SON•»•GEORGE 

'• HARRY^GEORGE 

SON•?•? 

?•GEORGE•? 

?»?iHARRY 

Does this relationship exist? 

Who is (are) the son(s) of Harry? 

Who is (are) the father(s) of George? 

What is (are) the relationships? 

What are the father/son relationships 

etc. 

etc. (these aren't too interesting) 

Dump associative memory (illegal in SAIL) 

We suggested in Section 9C4 that we might use the above question-mark form as a   pecial 

syntax for display of associations 

.1 

u 

Pnames 

We can associate with each item a string value, which we c^ll Its Pname. There can be but 

one Pname for each item, and conversely Efficient means are provided for finding one. 

given the other. We have used this Pname mechanism in COPILOT to implement the 

symbolic access to symbols .1 
.1 
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Pictorial Represfntation 

In this dissertation an item is normally represented by a small circle, sometimes a small 

square Its datum representation, if any. !s appended to the item piture by a small 

uplabelled line segment. The datum is drawn in a convenient repre:<?ntation for its data 

type, meaning, etc.  For example 

rpNAME-Y] o    a 
-•   s 

DESCRIPTOR 

<BEGIN>' 

An item's pname, if relevar. appears near the item, enclosed in brackets, as [PNAME - "I"]. 

Any other names apparently labelling an item is unofficial, included in the diagrams for 

descriptive purposes. 

The association "ATT»OBJiVAL" is drawn as an arc. lab' led by the attribute ATT. 

connecting OBJ and VAL. as: 

ATT 

OBJ 

J 
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